Chevron, Engine No. 1 and GE Vernova will develop power plants that allow for the future integration of lower-carbon solutions to support AI-focused data centers. Photo via Getty Images

Houston-based Chevron U.S.A. Inc., San Francisco investment firm Engine No. 1, and Boston electric service company GE Vernova have announced a partnership to create natural gas power plants in the United States. These plants support the increased demand for electricity at data centers, specifically those developing artificial intelligence solutions.

“The data centers needed to scale AI require massive amounts of 24/7 power. Meeting this demand is forecasted to require significant investment in power generation capacity, while managing carbon emissions and mitigating the risk of grid destabilization,” Chevron CEO Mike Wirth, shared in a LinkedIn post.

The companies say the plants, known as “power foundries,” are expected to deliver up to four gigawatts, equal to powering 3 million to 3.5 million U.S. homes, by the end of 2027, with possible project expansion. Their design will allow for the future integration of lower-carbon solutions, such as carbon capture and storage and renewable energy resources.

They are expected to leverage seven GE Vernova 7HA natural gas turbines, which will serve co-located data centers in the Southeast, Midwest and West. The exact locations have yet to be specified.

“Energy is the key to America’s AI dominance, “ Chris James, founder and chief investment officer of investment firm Engine No. 1, said in a news release. “By using abundant domestic natural gas to generate electricity directly connected to data centers, we can secure AI leadership, drive productivity gains across our economy and restore America’s standing as an industrial superpower. This partnership with Chevron and GE Vernova addresses the biggest energy challenge we face.”

According to the companies, the projects offer cost-effective and scalable solutions for growth in electrical demand while avoiding burdening the existing electrical grid. The companies plan to also use the foundries to sell surplus power to the U.S. power grid in the future.

The U.S. Department of Energy funding is earmarked for the new HyVelocity Hub. Photo via Getty Images

Houston's hydrogen revolution gets up to $1.2B federal boost to power Gulf Coast’s clean energy future

HyVelocity funding

The emerging low-carbon hydrogen ecosystem in Houston and along the Texas Gulf Coast is getting as much as a $1.2 billion lift from the federal government.

The U.S. Department of Energy funding, announced November 20, is earmarked for the new HyVelocity Hub. The hub — backed by energy companies, schools, nonprofits, and other organizations — will serve the country’s biggest hydrogen-producing area. The region earns that status thanks to more than 1,000 miles of dedicated hydrogen pipelines and almost 50 hydrogen production plants.

“The HyVelocity Hub demonstrates the power of collaboration in catalyzing economic growth and creating value for communities as we build a regional hydrogen economy that delivers benefits to Gulf Coast communities,” says Paula Gant, president and CEO of Des Plaines, Illinois-based GTI Energy, which is administering the hub.

HyVelocity, which aims to become the largest hydrogen hub in the country, has already received about $22 million of the $1.2 billion in federal funding to kickstart the project.

Organizers of the hydrogen project include:

  • Arlington, Virginia-based AES Corp.
  • Air Liquide, whose U.S. headquarters is in Houston
  • Chevron, which is moving its headquarters to Houston
  • Spring-based ExxonMobil
  • Lake Mary, Florida-based Mitsubishi Power Americas
  • Denmark-based Ørsted
  • Center for Houston’s Future
  • Houston Advanced Research Center
  • University of Texas at Austin

The hub’s primary contractor is HyVelocity LLC. The company says the hub could reduce carbon dioxide emissions by up to seven million metric tons per year and create as many as 45,000 over the life of the project.

HyVelocity is looking at several locations in the Houston area and along the Gulf Coast for large-scale production of hydrogen. The process will rely on water from electrolysis along with natural gas from carbon capture and storage. To improve distribution and lower storage costs, the hub envisions creating a hydrogen pipeline system.

Clean hydrogen generated by the hub will help power fuel-cell electric trucks, factories, ammonia plants, refineries, petrochemical facilities, and marine fuel operations.

Students in the program will have access to state-of-the-art simulation equipment, and be able to gain professional certifications. Photo via HISD

Chevron partners with HISD for unique training program for maritime industry

future workforce

Chevron Shipping is partnering with Houston Independent School District (HISD) in an effort to enhance Career and Technical Education (CTE) with new programming options.

One of the programs includes the Austin High School Maritime Studies program that is associated with Port of Houston Partnership in Maritime Education. Representatives from Chevron, HISD, and the Port of Houston participated in a signing ceremony at Austin High School in an event that featured a tour of the school's maritime-focused classrooms. The classrooms will serve as a hands-on learning environment that focuses on CTE and maritime careers.

“Chevron Shipping takes great pride in supporting the communities in which we operate, and we are excited to join forces with Austin High,” Barbara Pickering, president of Chevron Shipping Company said in a news release. “With a national and worldwide labor shortage in maritime related careers, this partnership will provide needed resources and open doors for students to pursue the abundant and lucrative career paths in the maritime industry – here in Houston and around the world.”

Students in the program will have access to state-of-the-art simulation equipment, and be able to gain professional certifications.

"Career and Technical Education is a critical component in preparing our students for the high-demand, high-skill jobs that are shaping the future of our workforce,” says Superintendent Mike Miles in a news release.

The program also includes development of skills to help them obtain careers in the maritime industry. Also included in the partnership will be guest lectures, workforce development, and mentorship opportunities with industry experts.

“By aligning our CTE programs with industry needs, we’re ensuring students have a direct pathway to rewarding careers in fields like maritime and shipping,” Miles adds. “This partnership is about giving our students real-world experience and opportunities that position them well after graduation."

Ten Rice University energy innovators have been selected for the Chevron Energy Graduate Fellowship. Photo by of Jeff Fitlow/Rice University

Chevron names inaugural cohort of energy transition graduate students at Rice University

ready to innovate

A new program from Rice University and Chevron has named its inaugural cohort.

Funded by Chevron, the Chevron Energy Graduate Fellowship will provide $10,000 each to 10 Rice graduate students for the current academic year, which supports research in energy-related fields.

The Rice Sustainability Institute (RSI) hosted the event to introduce the inaugural cohort of the Rice Chevron Energy Graduate Fellowship at the Ralph S. O’Connor Building for Engineering and Science. Director of the RSI and the W. Maurice Ewing Professor in Earth, Environmental and Planetary Sciences, Carrie Masiello presented each fellow with a certificate during the ceremony.

“This fellowship supports students working on a wide range of topics related to scalable innovations in energy production that will lead to the reduction of carbon dioxide emissions,” Masiello says in a news release. “It’s important that we recognize the importance of intellectual diversity to the kind of problem-solving we have to do as we accomplish the energy transition.”

The work of the students focuses on creating "real-world, scalable solutions to transform the energy landscape,” per the Rice release. Recipients of the fellowship will research solutions to energy challenges that include producing eco-friendly hydrogen alternatives to fossil fuels and recycling lithium-ion batteries.

Some of the fellows' work will focus on renewable fuels and carbon-capture technologies, biological systems to sequester carbon dioxide, and the potential of soil organic carbon sequestration on agricultural land if we remove the additionality constraint. Xi Chen, a doctoral student in materials science and nanoengineering, will use microwave-assisted techniques to recycle lithium-ion batteries sustainably.

Rice President Reginald DesRoches began the event by stressing the importance of collaboration. Ramamoorthy Ramesh, executive vice president for research at Rice, echoed that statement appearing via Zoom to applaud the efforts of doing what is right for the planet and having a partner in Chevron.

“I’m excited to support emerging leaders like you all in this room, who are focused on scalable, innovative solutions because the world needs them,” Chris Powers, vice president of carbon capture, utilization and storage and emerging at Chevron New Energies and a Rice alum, says at the event. “Innovation and collaboration across sectors and borders will be key to unlocking the full potential of lower carbon energies, and it’s groups like you, our newest Chevron Fellows, that can help move the needle when it comes to translating, or evolving, the energy landscape for the future.”

To see a full list of fellows, click here.

Chevron's newest deepwater oil and natural gas production project, called the Anchor, is an all-electric facility. Photo courtesy of Chevron

Chevron launches production at deepwater project that aims to lower carbon intensity off offshore activity

green light

Chevron's new massive deepwater oil and natural gas project in the Gulf of Mexico is officially up and running.

Chevron Corp., which recently announced its relocating its global headquarters to Houston, has officially started oil and natural gas production from its Anchor project in the U.S. Gulf of Mexico.

The semi-submersible floating production unit features a high-pressure technology that operates at up to 20,000 psi with reservoir depths reaching 34,000 feet below sea level, Chevron reports, and has a capacity of 75,000 gross barrels of oil per day and 28 million gross cubic feet of natural gas per day.

“The Anchor project represents a breakthrough for the energy industry,” Nigel Hearne, executive vice president of Chevron Oil - Products & Gas, says in a news release. “Application of this industry-first deepwater technology allows us to unlock previously difficult-to-access resources and will enable similar deepwater high-pressure developments for the industry.”

The Anchor project is Chevron’s sixth currently operating facility in the U.S. Gulf of Mexico. Photo courtesy of Chevron

Located 140 miles off the coast of Louisiana in the Green Canyon area and in water depths of approximately 5,000 feet, the Anchor is an all-electric facility with electric motors and electronic controls. The project utilizes waste heat and vapor recovery units and existing pipeline infrastructure for oil and natural gas transportation.

“This Anchor milestone demonstrates Chevron’s ability to safely deliver projects within budget in the Gulf of Mexico,” adds Bruce Niemeyer, president, Chevron Americas Exploration & Production. “The Anchor project provides affordable, reliable, lower carbon intensity oil and natural gas to help meet energy demand, while boosting economic activity for Gulf Coast communities.”

The Anchor project is Chevron’s sixth currently operating facility in the U.S. Gulf of Mexico, which is one of the lowest carbon intensity oil and gas basins in the world, per the release. By 2026, Chevron expects to be producing a combined total of 300,000 net barrels of oil equivalent per day.

Chevron's subsidiary, Chevron U.S.A. Inc. is the project operator and holds a 62.86 percent working interest. TotalEnergies E&P USA, Inc., the co-owner, holds a 37.14 percent working interest. Chevron estimates that the total potentially recoverable resources from the Anchor field is up to 440 million barrels of oil equivalent.

Houston-based energy companies have again held a sizable presence on the Fortune 500 ranking. Photo via Getty Images

Houston energy companies score big on annual Fortune 500 ranking

big cos.

Fourteen businesses with global or regional headquarters in the Houston area appear on Fortune’s new list of the world’s 500 biggest companies.

Oil and gas company Saudi Aramco, whose headquarters for the Americas is in Houston, leads the Houston-area pack. With annual revenue of $494.9 billion, it lands at No. 4 on the Fortune Global 500. Ahead of Saudi Aramco are U.S. retailers Walmart and Amazon, and Chinese electric company State Grid.

To put Saudi Aramco’s annual revenue in perspective, the total is slightly above the gross domestic product for the Philippines.

For the third year in a row, Saudi Aramco stands out as the most profitable member of the Fortune Global 500. The company racked up $121 billion in profit last year.

Overall, Saudi Aramco and 32 other petroleum refiners — many of them with a significant presence in the Houston area — made the Fortune Global 500.

“The Global 500 is the ultimate scorecard for business success. The aggregate revenue of the Fortune Global 500 in 2023 reached $41 trillion, a record level. That sum represents more than a third of global GDP — a sign of how much economic power is concentrated in these companies,” Scott DeCarlo, Fortune’s vice president of research, says in a news release.

Here’s the rundown of Fortune Global 500 companies with global or regional headquarters in the Houston area, including the ranking and annual revenue for each:

  • Saudi Aramco, No. 4, $494.9 billion, Americas headquarters in Houston
  • ExxonMobil, No. 12, $344.6 billion, global headquarters in Spring
  • Shell, No. 13, $323.2 billion; U.S. headquarters in Houston
  • TotalEnergies, No. 23, $218.9 billion, U.S. headquarters in Houston
  • BP, No. 25, $213 billion, U.S. headquarters in Houston
  • Chevron, No. 29, $200.9 billion, global headquarters relocating to Houston in 2024
  • Phillips 66, No. 52, $149.9 billion, global headquarters in Houston
  • Engie, No. 130, $89.3 billion, North American headquarters in Houston
  • Sysco, No. 163, $76.3 billion, global headquarters in Houston
  • ConocoPhillips, No. 235, $58.6 billion, global headquarters in Houston
  • Enterprise Products Partners, No. 303, $49.7 billion, global headquarters in Houston
  • Plains GP Holdings, No. 311, $48.7 billion, global headquarters in Houston
  • LyondellBasell, No. 368, $41.1 billion, global headquarters in Houston
  • SLB (formerly Schlumberger), No. 479, $33.1 billion, global headquarters in Houston

Fortune uses revenue figures for budget years ending on or before March 31, 2024, to rank the world’s largest companies.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.

Houston clean energy pioneer earns prestigious Welch Foundation award

Awards Season

A Rice University professor has earned a prestigious award from the Houston-based Welch Foundation, which supports chemistry research.

The foundation gave its 2025 Norman Hackerman Award in Chemical Research to Haotian Wang for his “exceptionally creative” research involving carbon dioxide electrochemistry. His research enables CO2 to be converted into valuable chemicals and fuels.

The award included $100,000 and a bronze sculpture.

“Dr. Wang’s extensive body of work and rigorous pursuit of efficient electrochemical solutions to practical problems set him apart as a top innovator among early-career researchers,” Catherine Murphy, chairwoman of the foundation’s Scientific Advisory Board, said in a news release.

Wang is an associate professor in the Department of Chemical and Biomolecular Engineering at Rice. The department’s Wang Group develops nanomaterials and electrolyzers for energy and environmental uses, such as energy storage, chemical and fuel generation, green synthesis and water treatment.

Wang also is co-founder of Solidec, a Houston startup that aims to turn his innovations into low-carbon fuels, carbon-negative hydrogen and carbon-neutral peroxide. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions.

Solidec has been selected for Chevron Technology Ventures’ catalyst program, a Rice One Small Step grant, a U.S. Department of Energy grant, and the first cohort of the Activate Houston program.

“Dr. Wang’s use of electrochemistry to close the carbon cycle and develop renewable sources of industrial chemicals directly intersects with the Welch Foundation mission of advancing chemistry while improving life,” Fred Brazelton, chairman and director of the Welch Foundation, said in the release.

Ramamoorthy Ramesh, executive vice president for research at Rice University, added: “We are proud to (Dr. Wang) at Rice. He’s using chemical engineering to solve a big problem for humanity, everything that the Welch Foundation stands for.”

Last year, the Hackerman Award went to Baylor College of Medicine's Livia Schiavinato Eberlin, who's known for her groundbreaking work in the application of mass spectrometry technologies, which are changing how physicians treat cancer and analyze tissues. Read more here.

Houston venture firm invests in Virginia fusion power plant company in collaboration with TAMU

fusion funding

Houston-based climate tech venture firm Ecosphere Ventures has partnered with Virginia Venture Partners and Virginia Innovation Partnership Corporation’s venture capital program to invest in Virginia-based NearStar Fusion Inc., which develops fusion energy power plants.

NearStar aims to use its proprietary plasma railgun technology to safely and affordably power baseload electricity on and off the power grid through a Magnetized Target Impact Fusion (MTIF) approach, according to a news release from the company.

NearStar’s power plants are designed to retrofit traditional fossil fuel power plants and are expected to serve heavy industry, data centers and military installations.

“Our design is well-suited to retrofit coal-burning power plants and reuse existing infrastructure such as balance of plant and grid connectivity, but I’m also excited about leveraging the existing workforce because you won’t need PhDs in plasma physics to work in our power plant,” Amit Singh, CEO of NearStar Fusion, said in a news release.

NearStar will also conduct experiments at the Texas A&M Hypervelocity Impact Laboratory (HVIL) in Bryan, Texas, on prototype fuel targets and evolving fuel capsule design. The company plans to publish the results of the experiments along with a concept paper this year. NearStar will work with The University of Alabama in Huntsville (UAH) to develop computer performance models for target implosions.

NearStar’s MTIF approach will utilize deuterium, which is a common isotope of hydrogen found in water. The process does not use tritium, which NearStar believes will save customers money.

“While avoiding tritium in our power plant design reduces scientific gain of the fusion process, we believe the vastly reduced system complexity and cost savings of eliminating complicated supply chains, regulatory oversight, and breeding of tritium allows NearStar to operate power plants more profitably and serve more customers worldwide, ”Douglas Witherspoon, NearStar founder and chief scientist, said in a news release.

Houston’s Ecosphere Ventures invests in climate tech and sustainability innovations from pre-seed to late-seed stages in the U.S. Ecosphere also supports first-time entrepreneurs and technical founders.