Things are heating up in Utah for Fervo Energy. Photo via fervoenergy.com

Houston-based cleantech startup Fervo Energy has broken ground on what it's describing as the "world’s largest next-gen geothermal project."

Fervo says the a 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

The company says Cape Station will generate about 6,600 construction jobs and 160 full-time jobs.

“Beaver County, Utah, is the perfect place to deploy our next-generation geothermal technology,” Tim Latimer, co-founder and CEO of Fervo, says in a news release. “The warmth and hospitality we have experienced from the communities of Milford and Beaver have allowed us to embark on a clean energy journey none of us could have imagined just a few years ago.”

In February, the U.S. Bureau of Land Management gave its blessing to the project, allowing Fervo to undertake exploration activities at the site.

“Geothermal innovations like those pioneered by Fervo will play a critical role in extending Utah’s energy leadership for generations to come,” says Utah Gov. Spencer Cox, who attended the groundbreaking ceremony.

Since being founded in 2017, Fervo has raised more than $180 million in funding. Its highest-profile investors are billionaires Jeff Bezos, Richard Branson and Bill Gates. They’re backing Fervo through Breakthrough Energy Ventures, whose managing director sits on Fervo’s board of directors.

Other investors include the Canada Pension Plan Investment Board (CPP Investments), DCVC, Devon Energy, Liberty Energy, Helmerich & Payne, Macquarie, the Grantham Foundation for the Protection of the Environment, Impact Science Ventures, and Prelude Ventures.

Fervo aims to generate more than one gigawatt of geothermal energy by 2030. On average, one gigawatt of power can provide electricity for 750,000 homes. Two coal-fired power plants can generate roughly the same amount of electricity.

Earlier this year, Fervo announced results of a test at Nevada’s Project Red site, which will supply power to Google data centers in the Las Vegas area. Fervo says the 30-day well test established Project Red as the “most productive enhanced geothermal system in history,” the company says. The test generated 3.5 megawatts of electricity.

In 2021, Fervo and Google signed the world’s first corporate agreement to produce geothermal power. Under the deal, Fervo will generate five megawatts of geothermal energy for Google through the Nevada project, which is set to go online later this year.

Onshore upstream meets greener pastures in the city where the earth meets the sky at URTeC 2023 in Denver. Photo via Shuttersock.

Can't miss: Unconventional Resources Technology Conference

ROAD TRIP

June 13-15 | Unconvetional Resources Technology Conference (URTeC)

Take a trip to higher ground and cooler temperatures next week at URTeC 2023 in Denver, Colorado. This technically focused event, hosted annually by the Society of Petroleum Engineers, American Association of Petroleum Geologists, and Society of Exploration Geophysicists, features the best and brightest minds in onshore oil and gas sharing novel applications of science and technology in pursuit of a more sustainable upstream energy base.

The event kicks off with almost two hours of discussion amongst industry leaders like Clay Gaspar, executive vice president and COO of Devon Energy, Amy Henry, CEO of Eunike Ventures, Robert E. Fast, CTO of Hess Corporation, and Neil McMahon, managing partner of Kimmeridge. The plenary panel will address the role of unconventionals in a lower carbon energy world, from tackling emissions to making advances in CCUS.

Chevron puts safety in the spotlight with a two-part session devoted to cleaner, more efficient engineering methodologies deployed to support corporate objectives while safely delivering higher returns and lower carbon. Hear from Vice President of the Rockies business unit, Kim McHugh, Johannes Alvarez, EOR and CO2 advisor for the Mid-Continent business unit, Vanessa Ryan, methane reduction manager of strategy and sustainability, and more leaders across Chevron building a new future for upstream energy.

Before the event wraps, be sure to catch an engaging discussion late Thursday morning with Christine Ehlig-Economides, professor and Hugh Roy & Lillie Cranz Cullen Distinguished University Chair at the University of Houston, on decarbonizing tight oil and shale gas, re-use opportunities for wastewater, and repurposed operations through closed-loop geothermal.

Registration currently remains open, with one- and three-day event options, as well as an exhibit hall-only option. The event usually draws over 3,000 attendees, so don’t wait to sign up.

For a complete list of upcoming energy events, visit the Events tab right here on EnergyCapitalHTX.com.

Energy sources are often categorized as renewable or not, but perhaps a more accurate classification focuses on the type of reaction that converts energy into useful matter. Photo by simpson33/Getty Images

How is energy produced?

ENERGY 101

Many think of the Energy Industry as a dichotomy–old vs. new, renewable vs. nonrenewable, good vs. bad. But like most things, energy comes from an array of sources, and each kind has its own unique benefits and challenges. Understanding the multi-faceted identity of currently available energy sources creates an environment in which new ideas for cleaner and more sustainable energy sourcing can proliferate.

At a high level, energy can be broadly categorized by the process of extracting and converting it into a useful form.

Energy Produced from Chemical Reaction

Energy derived from coal, crude oil, natural gas, and biomass is primarily produced as a result of bonds breaking during a chemical reaction. When heated, burned, or fermented, organic matter releases energy, which is converted into mechanical or electrical energy.

These sources can be stored, distributed, and shared relatively easily and do not have to be converted immediately for power consumption. However, the resulting chemical reaction produces environmentally harmful waste products.

Though the processes to extract these organic sources of energy have been refined for many years to achieve reliable and cheap energy, they can be risky and are perceived as invasive to mother nature.

According to the 2022 bp Statistical Review of World Energy, approximately 50% of the world’s energy consumption comes from petroleum and natural gas; another 25% from coal. Though there was a small decline in demand for oil from 2019 to 2021, the overall demand for fossil fuels remained unchanged during the same time frame, mostly due to the increase in natural gas and coal consumption.

Energy Produced from Mechanical Reaction

Energy captured from the earth’s heat or the movement of wind and water results from the mechanical processes enabled by the turning of turbines in source-rich environments. These turbines spin to produce electricity inside a generator.

Solar energy does not require the use of a generator but produces electricity due to the release of electrons from the semiconducting materials found on a solar panel. The electricity produced by geothermal, wind, solar, and hydropower is then converted from direct current to alternating current electricity.

Electricity is most useful for immediate consumption, as storage requires the use of batteries–a process that turns electrical energy into chemical energy that can then be accessed in much the same way that coal, crude oil, natural gas, and biomass produce energy.

Energy Produced from a Combination of Reactions

Hydrogen energy comes from a unique blend of both electrical and chemical energy processes. Despite hydrogen being the most abundant element on earth, it is rarely found on its own, requiring a two-step process to extract and convert energy into a usable form. Hydrogen is primarily produced as a by-product of fossil fuels, with its own set of emissions challenges related to separating the hydrogen from the hydrocarbons.

Many use electrolysis to separate hydrogen from other elements before performing a chemical reaction to create electrical energy inside of a contained fuel cell. The electrolysis process is certainly a more environmentally-friendly solution, but there are still great risks with hydrogen energy–it is highly flammable, and its general energy output is less than that of other electricity-generating methods.

Energy Produced from Nuclear Reaction

Finally, energy originating from the splitting of an atom’s nucleus, mostly through nuclear fission, is yet another way to produce energy. A large volume of heat is released when an atom is bombarded by neutrons in a nuclear power plant, which is then converted to electrical energy.

This process also produces a particularly sensitive by-product known as radiation, and with it, radioactive waste. The proper handling of radiation and radioactive waste is of utmost concern, as its effects can be incredibly damaging to the environment surrounding a nuclear power plant.

Nuclear fission produces minimal carbon, so nuclear energy is oft considered environmentally safe–as long as strict protocols are followed to ensure proper storage and disposal of radiation and radioactive waste.

Nuclear to Mechanical to Chemical?

Interestingly enough, the Earth’s heat comes from the decay of radioactive materials in the Earth’s core, loosely linking nuclear power production back to geothermal energy production.

It’s also clear the conversion of energy into electricity is the cleanest option for the environment, yet adequate infrastructure remains limited in supply and accessibility. If not consumed immediately as electricity, energy is thus converted into a chemical form for the convenience of storage and distribution it provides.

Perhaps the expertise and talent of Houstonians serving the flourishing academic and industrial sectors of energy development will soon resolve many of our current energy challenges by exploring further the circular dynamic of the energy environment. Be sure to check out our Events Page to find the networking event that best serves your interest in the Energy Transition.


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ConocoPhillips exec overseeing sustainability, tech set to retire

leadership shift

After decades at the company, ConocoPhillips's executive vice president of strategy, sustainability, and technology is retiring.

ConocoPhillips (NYSE: COP) announced that Dominic Macklon, who's been in his role for two and a half years and at the company for 33 years, has elected to retire effective May 1.

“I want to thank Dominic for his leadership, dedication and significant contributions during his distinguished 33 years with ConocoPhillips,” Ryan Lance, chairman and CEO, says in a news release.

“Dominic has played an important role in identifying and driving value from low cost of supply opportunities across our global portfolio while positioning our company for the energy transition and accelerating our emissions reduction initiatives," Lance continues. "I wish Dominic the best in retirement as he relocates back to the U.K.”

In his role, Macklon oversees the teams focused on corporate planning and development, global technical functions, information technology, sustainable development, and low carbon technology, according to the company's website. He previously worked on managing operations of the Gulf Coast and Great Plains business units, as well as land and commercial gas activities, finance, human resources and health, safety and environment.

A graduate of University of Edinburgh, his other leadership roles at the company include vice president of corporate planning and development, president of ConocoPhillips United Kingdom, and senior vice president of Oil Sands.

ConocoPhillips did not reveal any details on who is to succeed Macklon at this time.

Why this organization is focused on cultivating the future of energy transition innovation

Q&A

David Pruner is laser focused on the future workforce for the energy industry as executive director of the Texas Entrepreneurship Exchange for Energy, known as TEX-E, a nonprofit housed out of Greentown Labs that was established to support energy transition innovation at Texas universities.

TEX-E launched in 2022 in collaboration with Greentown Labs, MIT’s Martin Trust Center for Entrepreneurship, and five university partners — Rice University, Texas A&M University, Prairie View A&M University, University of Houston, and The University of Texas at Austin.

Pruner was officially named to his role earlier this year, but he's been working behind the scenes for months now getting to know the organization and already expanding its opportunities from students across the state at the five institutions.

"Our mission is to create the next generation of energy transition climatetech entrepreneurs and intrapreneurs — they don’t all have to start companies," he says on the Houston Innovators Podcast.

Listen to the show below and read through a brief excerpt from the episode with Pruner.


EnergyCapital: Can you share a little bit about the origin of TEX-E?

David Puner: There were a variety of factories that led to its creation, but the seminal event was a piece of work that had been done for the Greater Houston Partnership by McKinsey on the future of Houston. It showed that if Houston isn't careful and doesn't make sure to go ahead and transition with this energy expansion we’re seeing, that they’re at risk of losing hundreds of thousands of jobs. If they catch the transition right and make the conversion to cleaner and low-carbon fuels, they can actually gain 1.4 million jobs.

It was this eye opener for everyone that we need to make sure that if the energy transition is going to happen, it needs to happen here so that Houston stays the energy capital of the world.

David Baldwin (partner at SCF Partners) literally at the meeting said, “listen I've got the beginning of the funnel — the universities, that’s where innovation comes from.” From that, TEX-E was born.

EC: How are you working with the five founding universities to connect the dots for collaboration?

DP: In the end, we have five different family members who need to be coordinated differently. The idea behind TEX-E is that there's plenty of bright students at each of these schools, and there's plenty of innovation going on, it's whether it can grow, prosper, and be sustainable.

Our main job is to look to connect everyone, so that an engineer at Texas A&M that has an idea that they want to pursue, but they don't know the business side, can meet that Rice MBA. Then, when they realize it's going to be a highly regulated product, we need a regulatory lawyer at UT — we can make all that happen and connect them.

At the same time, what we found is, no one school has the answer. But when you put them together, we do have most of the answer. Almost everything we need is within those five schools. And it's not just those five schools, it really is open to everyone.

EC: As you mentioned before, TEX-E started as a way for Houston to take the reins of its energy transition. What's the pulse on that progress?

DP: I spent the last decade building boards and hiring CEOs for all kinds of energy companies and there was the period I would say — pre-pandemic and a little bit into the pandemic — where not everybody was on board with climate change and the issue of carbon. The nice thing now is that’s fully in the rearview mirror. There’s not really a company of any size or a management team of any major entity that doesn’t fully believe they need to do something there.

The train has fully left the station — and picked up speed — on this whole issue of transition and climate. So, that’s been nice to see and create a lot of tailwinds.

Houston company to pay millions to remedy pollution concerns in Permian Basin

stuck with the bill

A Houston company has reached a multimillion-dollar settlement with the federal government and the state of New Mexico to address air pollution concerns in the largest oil and gas producing region in the United States.

The agreement announced Tuesday with Apache Corp. calls for the company to pay $4 million in penalties and spend more than $5 million on preventative measures to reduce emissions at its wells in the Permian Basin, which spans parts of New Mexico and Texas.

Apache was accused in a civil lawsuit of failing to comply with federal and state requirements to capture and control emissions at some of its operations in the two states. Federal officials and regulators in New Mexico identified the alleged violations through field investigations and flyovers by helicopters outfitted with infrared cameras that can detect hydrocarbon vapors that are invisible to the naked eye.

Efforts by regulators to crack down on oil companies have ramped up in recent years through a combination of on-the-ground inspections, flyovers and now satellite imagery as they look for Clean Air Act violations across the Permian Basin and in other oil producing regions.

New Mexico Environment Secretary James Kenney said he's concerned about the compliance rate for companies operating in New Mexico, describing it as terrible.

“The ozone levels are rising, and you know, I think this is that moment where we have to hold up the mirror to industry and say, 'If you don’t like what you see, it’s a reflection of your own effort,” he said during an phone interview.

The civil complaint targeting Apache comes nearly a year after federal and state officials announced a similar agreement with another producer in the Permian Basin over violations. In 2022, an investigation by The Associated Press showed 533 oil and gas facilities in the region were emitting excessive amounts of methane.

Surveillance done by state and federal regulators in 2019, 2020 and 2022 turned up alleged violations at nearly two dozen of Apache’s sites.

The company said in an email that the consent decree announced Tuesday resolves alleged violations from years ago and that the company acted swiftly to remedy the issues. Changes have included modifications to allow for more measurement, monitoring and capture of emissions and increased site inspections and expedited maintenance timelines.

“Moving forward, the consent decree represents our commitment to continuous improvement across our facilities in the Permian Basin," the company said. "We also continue to collaborate with industry partners through organizations such as the Environmental Partnership and the U.N.’s Oil and Gas Methane Partnership in striving toward a more sustainable future.”

The agreement covers 422 of Apache's oil and gas well pads in New Mexico and Texas, ensuring that they will comply with state and federal clean air regulations and that past illegal emissions will be offset.

State and federal officials estimate that compliance will result in annual reductions of 900 tons of methane and more than 9,650 tons of volatile organic compounds, which contribute to smog.

In all, state officials said the recent consent decrees with energy companies cover about 15% of oil and gas production in New Mexico and about 9% of the wells.

While many operators in the Permian are complying with existing regulations, Kenney warned those that are skirting the rules will spur even greater federal and state enforcement over the entire industry if ozone levels continue to rise.

“Simply stated, the message is ‘Do better,’" Kenney said.

Apache's plan calls for making design improvements and installing new tank pressure monitoring systems that will provide advance notice of potential emissions and allow for an immediate response. Regular reports also will be submitted to the state.