Houston energy leader Barbara Burger shared her key takeaways from CERAWeek 2025 with InnovationMap. Photo courtesy of CERAWeek

What a difference a year makes.

I have been coming to CERAWeek for as long as I can remember and the Agora track within CERAWeek since it originated. Although freshness likely distorts my thinking, I cannot remember a CERAWeek that seemed so different from the previous year's than this one.

This certainly isn’t a comprehensive summary of the conference, but some of my key take forwards from last week's events.

It’s all about power.

It seemed like everyone associated with the power value chain showed up. Developers, turbine manufacturers, utilities, oil and gas, renewables, geothermal, nuclear, storage, hyperscalers, and lots of innovative companies that aim to squeeze more out of the grid we already have. Most of the companies embraced the “all of the above” sentiment and despite moderators (and some key notes) attempt to force technology picks, most didn’t take the bait.

Practical is in.

Real issues – choke points in supply chains and the workforce, permit timing, cost increases in new generation – were openly discussed both on the stage and in the countless meetings and meet ups in partner rooms and in open spaces throughout the Hilton Americas and the GR Brown.

AI was everywhere.

While there was an understanding that not all the power load growth is coming from AI and Data Centers, that segment was getting all the attention. AI went beyond the retail and human enablement to AI for Optimization and AI for Innovation. The symbiosis of Tech and Energy was evident – power is a constraint, and AI is a game changer. S&P (CERAWeek’s organizer) did a great job of weaving this theme across the conference in both the Executive and Agora sessions.

More gas… and less hydrogen.

Whether it was LNG or gas to power or methane emission management, the US’s dominance in gas was front and center. Hydrogen was largely absent from the Executive talks and where it was topical in the Agora sessions, the need for better economics was made clear.

Consistency and balance are needed for this sector.

I am unsure whether it is a “stay calm and carry on” approach, as one leader fashioned, or rather a “carry on” message and imperative. Phrases like “one extreme to another” were heard on stage and in the hallways. The oil and gas CEOs talked more openly about their base business than they had in the last four years but they also talked about their decarbonization activities as well as commercialization of new technologies and value chains.

The macro-economic picture cast long shadows.

While few talks onstage addressed tariffs, consumer sentiment, inflation and unemployment (including those from government officials), the talks in the halls and private meetings certainly did. And while some argued that “the end justifies the means,” it wasn’t an argument that most seemed to buy into.

There is a lot of tripping up on labels.

Politics makes our sector more polarizing than it should or needs to be. Climatetech, Sustainability, Cleantech – some were labels with broad objectives, and some were meant to be binary or exclusionary. "Energy Transition" for some meant a binary replacement of fossil fuels with renewables, and for others, it meant an evolution of a system in multiple dimensions. In any event, a lot of energy is being spent on the labels and the narratives. I don’t have an easy answer for this other than to fall back to longer discussions and less use of labels that have lots of meanings and can quickly move a constructive discussion onto the third rail.

Collaboration is key and vital in this uncertain world.

The attendance of approximately 10,000 spanned the breadth of energy, those who make, move, and use it from around the globe—in other words, everyone—with a strong tone of inclusion. CERAWeek, after all, is all about convening and collaboration, and this played out in the programming and the networking. The messages about practicality, consistency, balance and “all of the above” and the storm clouds of the extremes seemed to put everyone in a similar boat: Am I being too hopeful that this will lead to more and more collaboration within the sector to advance the multiple aims of affordability, reliability, security, resiliency and sustainability?

The next-generation workforce is a strategic imperative.

The NextGen cohort in Agora was launched with 100+ graduate students from all over coming to see the energy sector close up. Kudos to S&P for making this investment and to all the conference attendees who spent time talking to the students about their research, their interests, and, importantly, sharing their career stories. Relationships were born at CERAWeek.

Houston showed well for the conference and Mother Nature played nice. The days were sunny and dry, and the evening temperatures fit the outdoor events well. The schedule and pace of CERAWeek is exhausting, and most people were worn out by Thursday.

CERAWeek 2025 is in the books; the connections made, and messages heard set the tone for the year ahead.

Until CERAWeek 2026.

------

Barbara J. Burger is a startup adviser and mentor. She is the independent Director of Bloom Energy and is an advisor to numerous organizations, including Lazard Inc., Syzygy Plasmonics, Energy Impact Partners and others. She previously led corporate innovation for two decades at Chevron and served on the board of directors for Greentown Labs.

Fervo Energy received $100 million loan for its Utah Cape Station project. Photo via fervoenergy.com

Houston company secures $100M for 'world’s largest geothermal energy plant'

loan guarenteed

Houston-based geothermal energy company Fervo Energy has secured a $100 million bridge loan for the first phase of its ongoing project in Utah.

The loan came from an affiliate of Irvington, New York-based X-Caliber Rural Capital. Proceeds will support construction of Fervo’s Cape Station project, which is being touted as the world’s largest geothermal energy plant.

The first phase of Cape Station, which is on track to generate 90 megawatts of renewable energy, is expected to be completed in June 2026. Ultimately, the plant is supposed to supply 400 megawatts of clean energy by 2028 for customers in California.

“Helping this significant project advance and grow in rural America is a true testament to how investing in communities and businesses not only has local influence, but can have a global, long-lasting impact by promoting sustainability and stimulating rural economies,” Jordan Blanchard, co-founder of X-Caliber Rural Capital, says in a news release.

X-Caliber Rural Capital is an affiliate of commercial real estate financing company X-Caliber Capital Holdings.

Fervo says its drilling operations Utah’s Cape Station show a 70 percent reduction in drilling times, paving the way for advancement of its geothermal energy system.

Tim Latimer, co-founder and CEO of Fervo, says his company’s drilling advancements, purchase deals, transmission rights, permit approvals, and equipment acquisitions make Fervo “an ideal candidate” for debt financing. In May, Latimer joined the Houston Innovators Podcast to discuss the company's growth and latest project.

With a new office in downtown Houston, Fervo recently signed up one of the country’s largest utilities as a new customer and expanded its collaboration with Google.

To date, Fervo has raised $531 million in venture capital funding, per Crunchbase data.

A new program at Rice University will educate recent graduates or returning learners on key opportunities within energy transition. Photo via Rice

Rice University introduces new program for energy transition, sustainability

future of energy

A Houston university has committed to preparing the workforce for the future of energy with its newest program.

Rice University announced plans to launch the Master of Energy Transition and Sustainability, or METS, in the fall. The 31 credit-hour program, which is a joint initiative between Rice's George R. Brown School of Engineering and the Wiess School of Natural Sciences, "will train graduates to face emergent challenges in the energy sector and drive innovation in sustainability across a wide range of domains from technology to economics and policy," according to the university.

“We believe that METS graduates will emerge as leaders and innovators in the energy industry, equipped with the skills and knowledge to drive sustainable solutions,” Rice President Reginald DesRoches says in the release. “Together we can shape a brighter, more resilient and cleaner future for generations to come.”

Some of the focus points of the program will be geothermal, hydrogen, and critical minerals recovery. Additionally, there will be education around new technologies within traditional oil and gas industry, like carbon capture and sequestration and subsurface storage.

“We are excited to welcome the inaugural cohort of METS students in the fall of 2024,” Thomas Killian, dean of the Wiess School of Natural Sciences and a professor of physics and astronomy, says in the release. “This program offers a unique opportunity for students to delve into cutting-edge research, tackle real-world challenges and make a meaningful impact on the future of energy.”

The new initiative is just the latest stage in Rice's relationship with the energy industry.

“This is an important initiative for Rice that is very much aligned with the university’s long-term commitment to tackle urgent generational challenges, not only in terms of research — we are well positioned to make significant contributions on that front — but also in terms of education,” says Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and a professor of chemistry, materials science and nanotechnology and of civil and environmental engineering. “We want prospective students to know that they can confidently learn the concepts and tools they need to thrive as sustainability and energy transition experts and thought leaders.”

GA Drilling opened its Houston office in 2013 to tap into the region’s oil and gas industry. Photo via Getty Images

Drilling tech co. with Houston HQ to partner on European geothermal power plant

growing abroad

GA Drilling, a provider of geothermal drilling technology whose U.S. headquarters is in Houston, is teaming up with a European energy company to develop a geothermal power plant in Germany.

GA Drilling and ZeroGeo Energy, a Swiss company specializing in renewable energy, say the 12-megawatt Hot Dry Rock Geothermal Power Plant (Project THERMO) is the first of several geothermal power and geothermal energy storage projects they’re planning in Europe. GA Drilling will supply technology for Hot Dry Rock, and ZeroGEO will operate the plant.

“The need for clean baseload power is real, and geothermal has the highest potential to deliver that safely and securely. We’re excited to be collaborating with ZeroGeo to help address the power needs in Europe,” Dusan Kocis, co-founder and chief operating officer of Slovakia-based GA Drilling, says in a news release.

GA Drilling opened its Houston office in 2013 to tap into the region’s oil and gas industry.

Last year, GA Drilling conducted the first public demonstration of its latest deep drilling tool, ANCHORBIT. GA Drilling says it developed the tool to cut the cost of deep geothermal drilling by doubling drilling speeds and extending the life of drill bits.

GA Drilling performed the ANCHORBIT test at Nabors Industries’ technology center in Houston. Nabors, a drilling contractor based in Houston, is using GA Drilling’s technology in its drilling operations.

In 2022, Nabors invested $8 million in GA Drilling.

“Given the expected sharp growth in global energy consumption over the next decades, the world will require an even sharper growth in sustainable energy supply. I am convinced that geothermal energy will be a key contributor to the necessary increase in clean energy generation,” Anthony Petrello, chairman, president, and CEO of Nabors, said in an announcement about the GA Drilling investment.

Fervo Energy says its drilling operations Utah’s Cape Station show a 70 percent reduction in drilling times, paving the way for advancement of its geothermal energy system. Photo via fervoenergy.com

Houston geothermal startup reports 'dramatic acceleration' of drilling operations at Utah project

optimization station

Early drilling results indicate a geothermal energy project operated in Utah by Houston-based startup Fervo Energy is performing better than expected.

Fervo says its drilling operations Utah’s Cape Station show a 70 percent reduction in drilling times, paving the way for advancement of its geothermal energy system. Fervo began construction last year on Cape Station, which is set to deliver clean power to the grid in 2026 and be fully operating by 2028.

The company recently published early drilling results from Cape Station that it says exceed the U.S. Department of Energy’s expectations for enhanced geothermal systems. Fervo says these results “substantiate the rapid learning underway in the geothermal industry and signal readiness for continued commercialization.”

Founded in 2017, Fervo provides carbon-free energy through development of next-generation geothermal power.

Fervo began drilling at Cape Station, a 400-megawatt project in southwest Utah, in June 2023. Over the past six months, the company has drilled one vertical well and six horizontal wells there. The company reports that costs for the first four horizontal wells at Cape Station fell from $9.4 million to $4.8 million per well.

“Since its inception, Fervo has looked to bring a manufacturing mentality to enhanced geothermal development, building a highly repeatable drilling process that allows for continuous improvement and, as a result, lower costs,” Tim Latimer, Fervo’s co-founder and CEO, says in a news release. “In just six months, we have proven that our technology solutions have led to a dramatic acceleration in forecasted drilling performance.”

Trey Lowe, chief technology officer of Oklahoma City-based oil and gas producer Devon Energy, likens Fervo’s drilling results to “the early days of the shale revolution.” Last year, Devon invested $10 million in Fervo.

“When you operate continually and understand the resource, you dramatically streamline operations. That’s the unique value of Fervo’s approach to enhanced geothermal,” says Lowe.

Last summer, Fervo reported the results of another one of its projects, Project Red, which is in northern Nevada and made possible through a 2021 partnership with Google. That site officially went online for the tech company in December.

Things are heating up in Utah for Fervo Energy. Photo via fervoenergy.com

Houston company breaks ground on 'world's largest' geothermal project with next-generation tech

coming soon

Houston-based cleantech startup Fervo Energy has broken ground on what it's describing as the "world’s largest next-gen geothermal project."

Fervo says the a 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

The company says Cape Station will generate about 6,600 construction jobs and 160 full-time jobs.

“Beaver County, Utah, is the perfect place to deploy our next-generation geothermal technology,” Tim Latimer, co-founder and CEO of Fervo, says in a news release. “The warmth and hospitality we have experienced from the communities of Milford and Beaver have allowed us to embark on a clean energy journey none of us could have imagined just a few years ago.”

In February, the U.S. Bureau of Land Management gave its blessing to the project, allowing Fervo to undertake exploration activities at the site.

“Geothermal innovations like those pioneered by Fervo will play a critical role in extending Utah’s energy leadership for generations to come,” says Utah Gov. Spencer Cox, who attended the groundbreaking ceremony.

Since being founded in 2017, Fervo has raised more than $180 million in funding. Its highest-profile investors are billionaires Jeff Bezos, Richard Branson and Bill Gates. They’re backing Fervo through Breakthrough Energy Ventures, whose managing director sits on Fervo’s board of directors.

Other investors include the Canada Pension Plan Investment Board (CPP Investments), DCVC, Devon Energy, Liberty Energy, Helmerich & Payne, Macquarie, the Grantham Foundation for the Protection of the Environment, Impact Science Ventures, and Prelude Ventures.

Fervo aims to generate more than one gigawatt of geothermal energy by 2030. On average, one gigawatt of power can provide electricity for 750,000 homes. Two coal-fired power plants can generate roughly the same amount of electricity.

Earlier this year, Fervo announced results of a test at Nevada’s Project Red site, which will supply power to Google data centers in the Las Vegas area. Fervo says the 30-day well test established Project Red as the “most productive enhanced geothermal system in history,” the company says. The test generated 3.5 megawatts of electricity.

In 2021, Fervo and Google signed the world’s first corporate agreement to produce geothermal power. Under the deal, Fervo will generate five megawatts of geothermal energy for Google through the Nevada project, which is set to go online later this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

As electric bills rise, evidence mounts that data centers share blame

Data Talk

Amid rising electric bills, states are under pressure to insulate regular household and business ratepayers from the costs of feeding Big Tech's energy-hungry data centers.

It's not clear that any state has a solution and the actual effect of data centers on electricity bills is difficult to pin down. Some critics question whether states have the spine to take a hard line against tech behemoths like Microsoft, Google, Amazon and Meta.

But more than a dozen states have begun taking steps as data centers drive a rapid build-out of power plants and transmission lines.

That has meant pressuring the nation's biggest power grid operator to clamp down on price increases, studying the effect of data centers on electricity bills or pushing data center owners to pay a larger share of local transmission costs.

Rising power bills are “something legislators have been hearing a lot about. It’s something we’ve been hearing a lot about. More people are speaking out at the public utility commission in the past year than I’ve ever seen before,” said Charlotte Shuff of the Oregon Citizens’ Utility Board, a consumer advocacy group. “There’s a massive outcry.”

Not the typical electric customer

Some data centers could require more electricity than cities the size of Pittsburgh, Cleveland or New Orleans, and make huge factories look tiny by comparison. That's pushing policymakers to rethink a system that, historically, has spread transmission costs among classes of consumers that are proportional to electricity use.

“A lot of this infrastructure, billions of dollars of it, is being built just for a few customers and a few facilities and these happen to be the wealthiest companies in the world,” said Ari Peskoe, who directs the Electricity Law Initiative at Harvard University. “I think some of the fundamental assumptions behind all this just kind of breaks down.”

A fix, Peskoe said, is a “can of worms" that pits ratepayer classes against one another.

Some officials downplay the role of data centers in pushing up electric bills.

Tricia Pridemore, who sits on Georgia’s Public Service Commission and is president of the National Association of Regulatory Utility Commissioners, pointed to an already tightened electricity supply and increasing costs for power lines, utility poles, transformers and generators as utilities replace aging equipment or harden it against extreme weather.

The data centers needed to accommodate the artificial intelligence boom are still in the regulatory planning stages, Pridemore said, and the Data Center Coalition, which represents Big Tech firms and data center developers, has said its members are committed to paying their fair share.

But growing evidence suggests that the electricity bills of some Americans are rising to subsidize the massive energy needs of Big Tech as the U.S. competes in a race against China for artificial intelligence superiority.

Data and analytics firm Wood Mackenzie published a report in recent weeks that suggested 20 proposed or effective specialized rates for data centers in 16 states it studied aren’t nearly enough to cover the cost of a new natural gas power plant.

In other words, unless utilities negotiate higher specialized rates, other ratepayer classes — residential, commercial and industrial — are likely paying for data center power needs.

Meanwhile, Monitoring Analytics, the independent market watchdog for the mid-Atlantic grid, produced research in June showing that 70% — or $9.3 billion — of last year's increased electricity cost was the result of data center demand.

States are responding

Last year, five governors led by Pennsylvania's Josh Shapiro began pushing back against power prices set by the mid-Atlantic grid operator, PJM Interconnection, after that amount spiked nearly sevenfold. They warned of customers “paying billions more than is necessary.”

PJM has yet to propose ways to guarantee that data centers pay their freight, but Monitoring Analytics is floating the idea that data centers should be required to procure their own power.

In a filing last month, it said that would avoid a "massive wealth transfer” from average people to tech companies.

At least a dozen states are eyeing ways to make data centers pay higher local transmission costs.

In Oregon, a data center hot spot, lawmakers passed legislation in June ordering state utility regulators to develop new — presumably higher — power rates for data centers.

The Oregon Citizens’ Utility Board says there is clear evidence that costs to serve data centers are being spread across all customers — at a time when some electric bills there are up 50% over the past four years and utilities are disconnecting more people than ever.

New Jersey’s governor signed legislation last month commissioning state utility regulators to study whether ratepayers are being hit with “unreasonable rate increases” to connect data centers and to develop a specialized rate to charge data centers.

In some other states, like Texas and Utah, governors and lawmakers are trying to avoid a supply-and-demand crisis that leaves ratepayers on the hook — or in the dark.

Doubts about states protecting ratepayers

In Indiana, state utility regulators approved a settlement between Indiana Michigan Power Co., Amazon, Google, Microsoft and consumer advocates that set parameters for data center payments for service.

Kerwin Olsen, of the Citizens Action Council of Indiana, a consumer advocacy group, signed the settlement and called it a “pretty good deal” that contained more consumer protections than what state lawmakers passed.

But, he said, state law doesn't force large power users like data centers to publicly reveal their electric usage, so pinning down whether they're paying their fair share of transmission costs "will be a challenge.”

In a March report, the Environmental and Energy Law Program at Harvard University questioned the motivation of utilities and regulators to shield ratepayers from footing the cost of electricity for data centers.

Both utilities and states have incentives to attract big customers like data centers, it said.

To do it, utilities — which must get their rates approved by regulators — can offer “special deals to favored customers” like a data center and effectively shift the costs of those discounts to regular ratepayers, the authors wrote. Many state laws can shield disclosure of those rates, they said.

In Pennsylvania, an emerging data center hot spot, the state utility commission is drafting a model rate structure for utilities to consider adopting. An overarching goal is to get data center developers to put their money where their mouth is.

“We’re talking about real transmission upgrades, potentially hundreds of millions of dollars,” commission chairman Stephen DeFrank said. “And that’s what you don’t want the ratepayer to get stuck paying for."

8+ can't-miss events at Houston Energy and Climate Startup Week 2025

where to be

Editor's note: This article may be updated to include additional events.

The second annual Houston Energy and Climate Startup Week is less than a month away—and the calendar of events is taking shape.

The series of panels, happy hours and pitch days will take place Sept. 15-19. The Ion District will host many of the week's events.

Here are the details on some of the can't-miss events of the week:

Houston Energy & Climate Startup Week Kickoff Panel and Block Party

Join fellow innovators, founders, investors and energy leaders at this kick-off event hosted by The Ion and HETI, which will feature brief welcome remarks, a panel discussion and networking, followed by a block party on the Ion Plaza.

This event is Monday, Sept. 15, at 4 p.m. at The Ion. Register here.

Energytech Nexus Pilotathon

Grab breakfast and take in keynotes and panels by leaders from New Climate Ventures, V1 Climate, Halliburton, Energy Tech Nexus and many others. Then hear pitches during the Pilotathon, which targets startups ready to implement pilot projects within six to 12 months.

This event is Tuesday, Sept. 16, from 8 a.m.-5 p.m. at GreenStreet. Get tickets here.

Meet the Activate Houston Cohort 2025 Fellows

Meet Activate's latest cohort, which was named this summer, and also learn more about its 2024 group.

This event is Tuesday, Sept. 16, at 5 p.m. at the Ion. Register here.

New Climate Ventures Afterparty

Enjoy music, networking and carbon-negative spirits at Axelrad. Houston startups Quaise Energy, Solidec, Dimensional Energy, Rheom Materials, and Active Surfaces will also be on-site.

This event is Tuesday, Sept. 16, from 6:30-9:30 p.m. at Axelrad. Register here.

Green ICU Conference: Sustainability in Health Care for a Healthier Future

Houston Methodist will host its inaugural Green ICU Conference during Houston Energy & Climate Week. The conference is designed to bring together healthcare professionals, industry leaders, policymakers and innovators to explore solutions for building a more sustainable healthcare system.

This event is Wednesday, Sept. 17. from 8 a.m.-3 p.m. at TMC Helix Park. Register here.

Rice Alliance Energy Tech Venture Forum

Hear from clean energy startups from nine countries and 19 states at the 22nd annual Energy Tech Venture Forum. The 12 companies that were named to Class 5 of the Rice Alliance Clean Energy Accelerator will present during Demo Day to wrap up their 10-week program. Apart from pitches, this event will also host keynotes from Arjun Murti, partner of energy macro and policy at Veriten, and Susan Schofer, partner at HAX and chief science officer at SOSV. Panels will focus on corporate innovation and institutional venture capital.

This event is Thursday, Sept. 18, from 7:30 a.m.-5 p.m. at Rice University’s Jones Graduate School of Business. Register here.

Shell STCH Open House

Get a behind-the-scenes look at how Shell is leveraging open innovation to scale climate tech. The open house will spotlight two Houston-based startups—Mars Materials, which converts captured CO2 into acrylonitrile, and DexMat, which transforms methane into high-performance carbon nanotube fibers.

This event is Thursday, Sept. 18, from 8:30 a.m.-12:15 p.m. at Shell Technology Center. Register here.

ACCEL Year 3 Showcase

Celebrate Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, an accelerator program for startups led by BIPOC and other underrepresented founders from Greentown Labs and Browning the Green Space. Two Houston companies and one from Austin are among the eight startups to be named to the 2025 group. Hear startup pitches from the cohort, and from Greentown's Head of Houston, Lawson Gow, CEO Georgina Campbell Flatter and others.

This event is Thursday, Sept. 18, from 5-8 p.m. at Greentown Labs. Get tickets here.

Halliburton Labs Finalists Pitch Day

Hear from Halliburton Labs' latest cohort of entrepreneurs. The incubator aims to advance the companies’ commercialization with support from Halliburton's network, facilities and financing opportunities. Its latest cohort includes one company from Texas.

This event is Friday, Sept. 19, from 8 a.m.-noon at The Ion. Register here.

Chevron Energy Innovation Finals

The University of Houston will present the 4th Annual Chevron Innovation Commercialization Competition.

The event is Friday, Sept. 19, from 10 a.m.-1:30 p.m. at the University of Houston. Register here.

Houston Energy and Climate Startup Week was founded in 2024 by Rice Alliance for Technology and Entrepreneurship, Halliburton Labs, Greentown Labs, Houston Energy Transition Initiative (HETI), Digital Wildcatters and Activate.

Last year, Houston Energy and Climate Startup Week welcomed more than 2,000 attendees, investors and industry leaders to more than 30 events. It featured more than 100 speakers and showcased more than 125 startups.