The Welch Foundation has awarded funding through two of its newest grant programs. Photo via Getty Images.

Houston-based The Welch Foundation has issued $700,000 in additional funding to support chemical research through two of its newest grant programs.

The foundation has named the recipients of its Welch eXperimental (WelchX) Collaboration Retreat and Pilot Grants and the Welch Postdoctoral Fellows of the Life Sciences Research Foundation Grants.

The WelchX grants were awarded to teams of two Texas researchers who presented "innovative and collaborative ideas" addressing challenges in the clean energy space, according to the foundation.

Researchers from Texas universities gathered in Houston earlier this summer to discuss the theme “Chemical Research for Grand Challenges." They then paired off into nine teams and submitted proposals for the $100,000 pilot grants. The seven selected teams, several with ties to Houston, and their research topics include:

  • Yimo Han, Rice University, and Yuanyue Liu, The University of Texas at Austin, “Stabilizing Copper Electrocatalysts for CO2 Conversion”
  • Ognjen Miljanic, University of Houston, and Indrajit Srivastava, Texas Tech University, “Ping-Pong' Afterglow Luminescence in Self-Assembled Molecular Cubes”
  • Raúl Hernández Sánchez, Rice University, and Andy Thomas, Texas A&M University, “Accelerating Magnetic Resonance Imaging Contrast Agent Discovery via Rapid Injection NMR: Improving the Detection of Lithium for Disease Diagnostics”
  • Benjamin Janesko, Texas Christian University, and MD Masud Rana, Lamar University, “Cyber Twin Chemical Ensembles for Near-Infrared-Emitting Graphene Quantum Dot Therapeutics”
  • Ivan Korendovych, Baylor University, and Dino Villagrán, The University of Texas at El Paso, “Selective Bio-Inspired Electrochemical Probes for PFAS Analysis and Degradation”
  • Samantha Kristufek, Texas Tech University, and Kayla Green, Texas Christian University, “CIRCUIT: Critical Ion Recovery using Conductive and Ultrafiltration Intelligent Technology”
  • Fang Xu, The University of Texas at San Antonio, and Hong Wang, University of North Texas, “Visualize Molecular Adsorption on Supported Ni-porphyrin Model Catalysts via Substitute Effect”

The Welch Postdoctoral Fellows of the Life Sciences Research Foundation provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas.

The foundation previously announced that it would name fellows from Rice University and Baylor University who would receive $100,000 annually for three years. This year's recipients and their research topics include:

  • Teng Yuan, Rice University, “Unlocking New Chemistry of Nonheme Iron Enzymes for α-Amino Acids and γ-Lactones Synthesis”
  • Katelyn Baumler, Baylor University, "Crystal Growth of Ln2Fe4Sb5 Phases Toward the Study of Novel Quantum Properties”

“As these programs become more established, it is thrilling to see the new research our awardees are exploring,” Adam Kuspa, president of The Welch Foundation, said in a news release. “The Foundation is very pleased by the applications that we continue to receive describing exciting new research projects to advance chemical research.”

This additional funding comes on the heels of the foundation doling out $27 million for chemical research, equipment and postdoctoral fellowships earlier this summer. The foundation made 85 grants to faculty at 16 Texas institutions at the time. Read more here.

--

This article originally appeared on our sister site, Innovationmap.com.

The teams at this year's Energy Venture Day and Pitch Competition have collectively raised $435 million in funding. Photo courtesy of CERAWeek

CERAWeek announces winners of annual clean tech pitch competition

top teams

Teams from around the world and right here in Houston took home prizes at the fourth annual Energy Venture Day and Pitch Competition at CERAWeek on March 12.

The fast-paced event, put on by Rice Alliance, Houston Energy Transition Initiative and TEX-E, invited 36 industry startups and five Texas-based student teams focused on driving efficiency and advancements toward the energy transition to present at 3.5-minute pitch before investors and industry partners during CERAWeek's Agora program. The competition is a qualifying event for the Startup World Cup, powered by Pegasus Venture, where teams compete for a $1 million investment prize.

The teams at this year's Energy Venture Day have collectively raised $435 million in funding.

Rice University student teams took home two of the three top prizes in the competition.

HEXASpec won the student track, known at TEX-E, taking home $25,000. The team's pitch focused on enhancing semiconductor chips’ thermal conductivity to boost computing power. Pattern Materials, another Rice-led team, claimed third place and won $10,000 for its proprietary LIG and LIGF technology that produces graphene patterns.

A team from the University of Texas McCombs School of Business, Nanoborne, took home second place and $15,000 for its engineering company focused on research and development in applied nanotechnology.

The companies that pitched in the three industry tracts competed for non-monetary awards. Here's who won:

Track A: Hydrogen, Fuel Cells, Buildings, Water, & Other Energy Solutions

Track B: Advanced Manufacturing, Materials, Fossil Energy, & Carbon Management

Track C: Industrial Efficiency, Decarbonization, Electricity, & the Grid

Arculus Solutions, which retrofits natural gas pipelines for safe hydrogen transportation, was named the overall winner and will move on to the Startup World Cup competition. California-based Membravo was also given a "golden ticket" to participate in the next NOV Supernova Accelerator cohort.

Teams at this year's Energy Venture Day represented five countries and 15 states. Click here to see the full list of companies and investor groups that participated.

The podcast, called Phases and Stages: The Texas Energy Story , will be hosted by Andy Uhler, who will visit a different Texas location every month to analyze the evolving energy landscape of the state. Photo via Getty Images

New podcast launches to shine light on changing energy landscape in Texas

streaming soon

The University of Texas at Austin's Energy Institute is premiering a Texas-focused energy transition podcast next month.

The podcast, called Phases and Stages: The Texas Energy Story — a nod to Willie Nelson's 17th studio album, is an hour-long, story-format podcast hosted by Andy Uhler, an Austin-based journalism fellow at the Columbia University Center on Global Energy Policy & University of Texas Energy Institute and former KUT Radio reporter.

In the first season, which premieres Wednesday, September 25, Uhler will visit a different Texas location every month to analyze the evolving energy landscape of the state.

"Today, Texas leads the nation in combined wind and solar production and will soon be home to a Gulf Coast hub promising to expand the clean hydrogen industry," reads UT's website. "New energy ventures are proliferating across the state as entrepreneurs seize the opportunity to leverage Texas’ energy infrastructure and expertise to bring promising new innovations to market. Even oil and gas companies are expanding into nontraditional sectors, as advanced technologies open up new possibilities."

UT estimates that nearly 1.4 million Texans are directly or indirectly supported by the oil and gas sector. The podcast sets out to examine questions about how new energy expansion in the Lone Star State will effect the lives of Texans, as well as how the local economies and job markets are expected to evolve.

"Traveling the state to gather first-hand accounts beyond the oil rig and the boardroom, award-winning public radio correspondent Andy Uhler speaks with farmers, school teachers, community members, and everyone in between to get a sense of what the energy transition means for Texans and their communities," the website continues.

The UT Energy Institute will host a launch event for Phases and Stages with Uhler on Wednesday, September 25, 5 to 7 pm, to celebrate the show's series premiere as part of EnergizeUT.

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

Rice University semiconductor researchers join DARPA-funded Texas team

innovation station

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site. Photo via utexas.edu

Texas hydrogen research hub brings on new corporate partner

howdy, partner

A Texas US Department of Energy initiative has added a new corporate player.

Hitachi Energy has joined the DOE's H2@Scale in Texas and Beyond initiative with GTI Energy, Frontier Energy, The University of Texas Austin, and others. The initiative, which opened earlier this year, plans to assist in “integrating utility-scale renewable energy sources with power grids and managing and orchestrating a variety of energy sources” according to a news release.

Most of the ‘H2@Scale project’s activities take place at University of Texas JJ Pickle Research Center in Austin. The project is part of a larger one to expand hydrogen’s role and help to decarbonize Texas. The ‘H2@Scale' project consists of multiple hydrogen production options like a vehicle refueling station alongside a fleet of hydrogen fuel cell vehicles.

Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site.

Another larger goal is to investigate the efficiency and cost-effectiveness of hydrogen generation from renewable resources, which all aligns with the project’s vision of decarbonization efforts.

Hitachi Energy is part of the full hydrogen value chain from early-stage project origination and design. They also work to ensure grid compliance, power conversion systems and asset management solutions.

“Hitachi Energy is proud to be a key partner in the US Department of Energy’s ‘H2@Scale in Texas and Beyond’ project. The initiative comes at a pivotal moment in our commitment to advancing hydrogen production and its role in the evolving clean energy landscape,” Executive Vice President and Region Head of North America at Hitachi Energy Anthony Allard says in a news release. “As hydrogen emerges as a critical element in decarbonizing hard-to-abate industries, Hitachi Energy remains dedicated to drive innovation and sustainability on a global scale.”

Hitachi’s project teams will undertake feasibility studies for scaling up hydrogen production and use, which will aim to benefit the development of a strategic plan and implementation of the H2@Scale project in the Port of Houston and the region of the Gulf Coast. The teams will also seek opportunities to leverage prospective hydrogen users, pre-existing hydrogen pipelines, and large networks of concentrated industrial infrastructure. Then, they will work to identify environmental and economic benefits of hydrogen deployment in the area.

Earlier this year, Hitachi Energy teamed up with teamed up with Houston-based electrical transmission developer Grid United for a collaboration to work on high-voltage direct current technology for Grid United transmission projects. These projects will aim to interconnect the eastern and western regional power grids in the U.S. The Eastern Interconnection east of the Rocky Mountains, the Western Interconnection west of the Rockies and the Texas Interconnection run by the Electric Reliability Council of Texas, make up the three main power grids.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin. Photo via utexas.edu

Texas hydrogen research hub opens to support statewide, DOE-backed initiative

hi to hydrogen

A Texas school has cut the ribbon on a new hydrogen-focused research facility that will play a role in a statewide, Department of Energy-funded energy transition initiative.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin as part of the “Demonstration and Framework for H2@Scale in Texas and Beyond” project, which is supported by the DOE's Hydrogen and Fuel Cell Technologies Office.

The hydrogen proto-hub is first-of-its-kind and part of Texas-wide initiative for a cleaner hydrogen economy and will feature contributions from organizations throughout the state. The facility will generate zero-carbon hydrogen by using water electrolysis powered by solar and wind energy, and steam methane reformation of renewable natural gas from a Texas landfill.

The hydrogen will be used to power a stationary fuel cell for power for the Texas Advanced Computing Center, and it will also supply zero-emission fuel to cell drones and a fleet of Toyota Mirai fuel cell electric vehicles. This method will mark the first time that multiple renewable hydrogen supplies and uses have been networked at one location to show an economical hydrogen ecosystem that is scalable.

“The H2@Scale in Texas project builds on nearly two decades of UT leadership in hydrogen research and development” Michael Lewis, Research Scientist, UT Austin Center for Electromechanics, say in a news release. “With this facility, we aim to provide the educated workforce and the engineering data needed for success. Beyond the current project, the hydrogen research facility is well-positioned for growth and impact in the emerging clean hydrogen industry.”

Over 20 sponsors and industry stakeholders are involved and include Houston-based partners in Center for Houston’s Future and Rice University Baker Institute for Public Policy. Industry heavyweights like Chevron, Toyota, ConocoPhillips, and the Texas Commission on Environmental Quality are also part of the effort.

Texas hydrogen infrastructure and wind and solar resources position the state for clean hydrogen production, as evident in the recently released study, “A Framework for Hydrogen in Texas.” The study was part of a larger effort that started in 2020 with the H2@Scale project, which aims to develop clearer paths to renewable hydrogen as a “clean and cost-effective fuel” according to a news release. The facility will serve as an academic research center, and a model for future large-scale hydrogen deployments.

Participants in the DOE-funded HyVelocity Gulf Coast Hydrogen Hub will aim to gain insights from the H2@Scale project at UT Austin. The project will build towards a development of a comprehensive hydrogen network across the region. HyVelocity is a hub that includes AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Orsted, and Sempra Infrastructure. The GTI Energy administered HyVelocity involves The University of Texas at Austin, the Center for Houston’s Future, and Houston Advanced Research Center.

“H2@Scale isn't just about producing low-carbon energy, it's about creating clean energy growth opportunities for communities throughout Texas and the nation,” Adam Walburger, president of Frontier Energy, says in a news release. “By harnessing renewable energy resources to create zero-carbon hydrogen, we can power homes, businesses, transportation, and agriculture – all while creating jobs and reducing emissions.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investment bank opens energy-focused office in Houston

new to hou

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

Houston cleantech startup Helix Earth lands $1.2M NSF grant

federal funding

Renewable equipment manufacturer Helix Earth Technologies is one of three Houston-based companies to secure federal funding through the Small Business Innovation Research (SBIR) Phase II grant program in recent months.

The company—which was founded based on NASA technology, spun out of Rice University and has been incubated at Greentown Labs—has received approximately $1.2 million from the National Science Foundation to develop its high-efficiency retrofit dehumidification systems that aim to reduce the energy consumption of commercial AC units. The company reports that its technology has the potential to cut AC energy use by up to 50 percent.

"This award validates our vision and propels our impact forward with valuable research funding and the prestige of the NSF stamp of approval," Rawand Rasheed, Helix CEO and founder, shared in a LinkedIn post. "This award is a reflection our exceptional team's grit, expertise, and collaborative spirit ... This is just the beginning as we continue pushing for a sustainable future."

Two other Houston-area companies also landed $1.2 million in NSF SBIR Phase II funding during the same period:

  • Resilitix Intelligence, a disaster AI startup that was founded shortly after Hurricane Harvey, that works to "reduce the human and economic toll of disasters" by providing local and state organizations and emergency response teams with near-real-time, AI-driven insights to improve response speed, save lives and accelerate recovery
  • Conroe-based Fluxworks Inc., founded in 2021 at Texas A&M, which provides magnetic gear technology for the space industry that has the potential to significantly enhance in-space manufacturing and unlock new capabilities for industries by allowing advanced research and manufacturing in microgravity

The three grants officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on September 30, 2025, and has stalled since the recent government shutdown. Government agencies cannot issue new grants until Congress agrees on a path forward. According to SBIR.gov, "if no further action is taken by Congress, federal agencies may not be able to award funding under SBIR/STTR programs and SBIR/STTR solicitations may be delayed, cancelled, or rescinded."

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.