The podcast, called Phases and Stages: The Texas Energy Story , will be hosted by Andy Uhler, who will visit a different Texas location every month to analyze the evolving energy landscape of the state. Photo via Getty Images

The University of Texas at Austin's Energy Institute is premiering a Texas-focused energy transition podcast next month.

The podcast, called Phases and Stages: The Texas Energy Story— a nod to Willie Nelson's 17th studio album, is an hour-long, story-format podcast hosted by Andy Uhler, an Austin-based journalism fellow at the Columbia University Center on Global Energy Policy & University of Texas Energy Institute and former KUT Radio reporter.

In the first season, which premieres Wednesday, September 25, Uhler will visit a different Texas location every month to analyze the evolving energy landscape of the state.

"Today, Texas leads the nation in combined wind and solar production and will soon be home to a Gulf Coast hub promising to expand the clean hydrogen industry," reads UT's website. "New energy ventures are proliferating across the state as entrepreneurs seize the opportunity to leverage Texas’ energy infrastructure and expertise to bring promising new innovations to market. Even oil and gas companies are expanding into nontraditional sectors, as advanced technologies open up new possibilities."

UT estimates that nearly 1.4 million Texans are directly or indirectly supported by the oil and gas sector. The podcast sets out to examine questions about how new energy expansion in the Lone Star State will effect the lives of Texans, as well as how the local economies and job markets are expected to evolve.

"Traveling the state to gather first-hand accounts beyond the oil rig and the boardroom, award-winning public radio correspondent Andy Uhler speaks with farmers, school teachers, community members, and everyone in between to get a sense of what the energy transition means for Texans and their communities," the website continues.

The UT Energy Institute will host a launch event for Phases and Stages with Uhler on Wednesday, September 25, 5 to 7 pm, to celebrate the show's series premiere as part of EnergizeUT.

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

Rice University semiconductor researchers join DARPA-funded Texas team

innovation station

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site. Photo via utexas.edu

Texas hydrogen research hub brings on new corporate partner

howdy, partner

A Texas US Department of Energy initiative has added a new corporate player.

Hitachi Energy has joined the DOE's H2@Scale in Texas and Beyond initiative with GTI Energy, Frontier Energy, The University of Texas Austin, and others. The initiative, which opened earlier this year, plans to assist in “integrating utility-scale renewable energy sources with power grids and managing and orchestrating a variety of energy sources” according to a news release.

Most of the ‘H2@Scale project’s activities take place at University of Texas JJ Pickle Research Center in Austin. The project is part of a larger one to expand hydrogen’s role and help to decarbonize Texas. The ‘H2@Scale' project consists of multiple hydrogen production options like a vehicle refueling station alongside a fleet of hydrogen fuel cell vehicles.

Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site.

Another larger goal is to investigate the efficiency and cost-effectiveness of hydrogen generation from renewable resources, which all aligns with the project’s vision of decarbonization efforts.

Hitachi Energy is part of the full hydrogen value chain from early-stage project origination and design. They also work to ensure grid compliance, power conversion systems and asset management solutions.

“Hitachi Energy is proud to be a key partner in the US Department of Energy’s ‘H2@Scale in Texas and Beyond’ project. The initiative comes at a pivotal moment in our commitment to advancing hydrogen production and its role in the evolving clean energy landscape,” Executive Vice President and Region Head of North America at Hitachi Energy Anthony Allard says in a news release. “As hydrogen emerges as a critical element in decarbonizing hard-to-abate industries, Hitachi Energy remains dedicated to drive innovation and sustainability on a global scale.”

Hitachi’s project teams will undertake feasibility studies for scaling up hydrogen production and use, which will aim to benefit the development of a strategic plan and implementation of the H2@Scale project in the Port of Houston and the region of the Gulf Coast. The teams will also seek opportunities to leverage prospective hydrogen users, pre-existing hydrogen pipelines, and large networks of concentrated industrial infrastructure. Then, they will work to identify environmental and economic benefits of hydrogen deployment in the area.

Earlier this year, Hitachi Energy teamed up with teamed up with Houston-based electrical transmission developer Grid United for a collaboration to work on high-voltage direct current technology for Grid United transmission projects. These projects will aim to interconnect the eastern and western regional power grids in the U.S. The Eastern Interconnection east of the Rocky Mountains, the Western Interconnection west of the Rockies and the Texas Interconnection run by the Electric Reliability Council of Texas, make up the three main power grids.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin. Photo via utexas.edu

Texas hydrogen research hub opens to support statewide, DOE-backed initiative

hi to hydrogen

A Texas school has cut the ribbon on a new hydrogen-focused research facility that will play a role in a statewide, Department of Energy-funded energy transition initiative.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin as part of the “Demonstration and Framework for H2@Scale in Texas and Beyond” project, which is supported by the DOE's Hydrogen and Fuel Cell Technologies Office.

The hydrogen proto-hub is first-of-its-kind and part of Texas-wide initiative for a cleaner hydrogen economy and will feature contributions from organizations throughout the state. The facility will generate zero-carbon hydrogen by using water electrolysis powered by solar and wind energy, and steam methane reformation of renewable natural gas from a Texas landfill.

The hydrogen will be used to power a stationary fuel cell for power for the Texas Advanced Computing Center, and it will also supply zero-emission fuel to cell drones and a fleet of Toyota Mirai fuel cell electric vehicles. This method will mark the first time that multiple renewable hydrogen supplies and uses have been networked at one location to show an economical hydrogen ecosystem that is scalable.

“The H2@Scale in Texas project builds on nearly two decades of UT leadership in hydrogen research and development” Michael Lewis, Research Scientist, UT Austin Center for Electromechanics, say in a news release. “With this facility, we aim to provide the educated workforce and the engineering data needed for success. Beyond the current project, the hydrogen research facility is well-positioned for growth and impact in the emerging clean hydrogen industry.”

Over 20 sponsors and industry stakeholders are involved and include Houston-based partners in Center for Houston’s Future and Rice University Baker Institute for Public Policy. Industry heavyweights like Chevron, Toyota, ConocoPhillips, and the Texas Commission on Environmental Quality are also part of the effort.

Texas hydrogen infrastructure and wind and solar resources position the state for clean hydrogen production, as evident in the recently released study, “A Framework for Hydrogen in Texas.” The study was part of a larger effort that started in 2020 with the H2@Scale project, which aims to develop clearer paths to renewable hydrogen as a “clean and cost-effective fuel” according to a news release. The facility will serve as an academic research center, and a model for future large-scale hydrogen deployments.

Participants in the DOE-funded HyVelocity Gulf Coast Hydrogen Hub will aim to gain insights from the H2@Scale project at UT Austin. The project will build towards a development of a comprehensive hydrogen network across the region. HyVelocity is a hub that includes AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Orsted, and Sempra Infrastructure. The GTI Energy administered HyVelocity involves The University of Texas at Austin, the Center for Houston’s Future, and Houston Advanced Research Center.

“H2@Scale isn't just about producing low-carbon energy, it's about creating clean energy growth opportunities for communities throughout Texas and the nation,” Adam Walburger, president of Frontier Energy, says in a news release. “By harnessing renewable energy resources to create zero-carbon hydrogen, we can power homes, businesses, transportation, and agriculture – all while creating jobs and reducing emissions.”

Houston's HyVelocity Hub has joined in on a joint letter with the other six H2Hubs asking for revised guidelines. Photo via Getty Images

Houston's clean hydrogen hub joins request to revise federal tax credit guidance

edits needed

The group of regional hubs tapped by the United States government to receive funding to develop clean hydrogen projects have banded together to request a revision of the U.S. Department of Treasury's proposed hydrogen production tax credit (45V) guidance.

Houston's HyVelocity Hub, which was selected to receive up to $1.2 billion from the government's initiative, has joined in on a joint letter with the other six H2Hubs asking for revised requirements. HyVelocity also submitted its own letter to the Treasury.

HyVelocity's letter asks for flexibility and certainty the implementation of the “three pillars” for electricity, which include temporality, incrementality, and deliverability.

"It is imperative that to enable the desired environmental, economic, and equity goals of the IRA, private investment in hydrogen production must advance at scale and at an accelerated pace. Hydrogen production project investments require stable market projections and assurance of regulatory stability to ensure the economics of the long-term projects. To support this investment environment, we recommend that projects be granted a 'grandfathered exemption' such that for the project's life, they can use the regulations in place at the time when construction begins," reads the letter from HyVelocity.

HyVelocity, representing the Gulf Coast region, plans to create up to 35,000 construction jobs and 10,000 permanent jobs across nine proposed core projects with a collective investment of more than $10 billion in private capital to bring low-carbon hydrogen to the market.

The Houston-area initiative is backed by industry partners AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Ørsted, and Sempra Infrastructure and The spearheaded by GTI Energy and other organizing participants, including the University of Texas at Austin, The Center for Houston’s Future, Houston Advanced Research Center, and around 90 other supporting partners from academia, industry, government, and beyond.

David Pruner, executive director of TEX-E, joins the Houston Innovator Podcast. Photo via LinkedIn

Why this organization is focused on cultivating the future of energy transition innovation

Q&A

David Pruner is laser focused on the future workforce for the energy industry as executive director of the Texas Entrepreneurship Exchange for Energy, known as TEX-E, a nonprofit housed out of Greentown Labs that was established to support energy transition innovation at Texas universities.

TEX-E launched in 2022 in collaboration with Greentown Labs, MIT’s Martin Trust Center for Entrepreneurship, and five university partners — Rice University, Texas A&M University, Prairie View A&M University, University of Houston, and The University of Texas at Austin.

Pruner was officially named to his role earlier this year, but he's been working behind the scenes for months now getting to know the organization and already expanding its opportunities from students across the state at the five institutions.

"Our mission is to create the next generation of energy transition climatetech entrepreneurs and intrapreneurs — they don’t all have to start companies," he says on the Houston Innovators Podcast.

Listen to the show below and read through a brief excerpt from the episode with Pruner.


EnergyCapital: Can you share a little bit about the origin of TEX-E?

David Puner: There were a variety of factories that led to its creation, but the seminal event was a piece of work that had been done for the Greater Houston Partnership by McKinsey on the future of Houston. It showed that if Houston isn't careful and doesn't make sure to go ahead and transition with this energy expansion we’re seeing, that they’re at risk of losing hundreds of thousands of jobs. If they catch the transition right and make the conversion to cleaner and low-carbon fuels, they can actually gain 1.4 million jobs.

It was this eye opener for everyone that we need to make sure that if the energy transition is going to happen, it needs to happen here so that Houston stays the energy capital of the world.

David Baldwin (partner at SCF Partners) literally at the meeting said, “listen I've got the beginning of the funnel — the universities, that’s where innovation comes from.” From that, TEX-E was born.

EC: How are you working with the five founding universities to connect the dots for collaboration?

DP: In the end, we have five different family members who need to be coordinated differently. The idea behind TEX-E is that there's plenty of bright students at each of these schools, and there's plenty of innovation going on, it's whether it can grow, prosper, and be sustainable.

Our main job is to look to connect everyone, so that an engineer at Texas A&M that has an idea that they want to pursue, but they don't know the business side, can meet that Rice MBA. Then, when they realize it's going to be a highly regulated product, we need a regulatory lawyer at UT — we can make all that happen and connect them.

At the same time, what we found is, no one school has the answer. But when you put them together, we do have most of the answer. Almost everything we need is within those five schools. And it's not just those five schools, it really is open to everyone.

EC: As you mentioned before, TEX-E started as a way for Houston to take the reins of its energy transition. What's the pulse on that progress?

DP: I spent the last decade building boards and hiring CEOs for all kinds of energy companies and there was the period I would say — pre-pandemic and a little bit into the pandemic — where not everybody was on board with climate change and the issue of carbon. The nice thing now is that’s fully in the rearview mirror. There’s not really a company of any size or a management team of any major entity that doesn’t fully believe they need to do something there.

The train has fully left the station — and picked up speed — on this whole issue of transition and climate. So, that’s been nice to see and create a lot of tailwinds.

———

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil names new partner to bolster US lithium supply chain with offtake agreement

ev supplies en route

Spring-headquartered ExxonMobil Corp. has announced a new MOU for an offtake agreement for up to 100,000 metric tons of lithium carbonate.

The agreement is with LG Chem, which is building its cathode plant in Tennessee and expects it to be the largest of its kind in the country. The project broke ground a year ago and expects an annual production capacity of 60,000 tons. The lithium will be supplied by ExxonMobil.

“America needs secure domestic supply of critical minerals like lithium,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “ExxonMobil is proud to lead the way in establishing domestic lithium production, creating jobs, driving economic growth, and enhancing energy security here in the United States.”

The industry currently has a lithium supply shortage due to the material's use in electric vehicle batteries and the fact that most of production happens overseas.

“Building a lithium supply chain with ExxonMobil, one of the world’s largest energy companies, holds great significance,” Shin Hak-cheol, CEO of LG Chem, adds. “We will continue to strengthen LG Chem’s competitiveness in the global supply chain for critical minerals.”

Per the release, the final investment decision is still pending.

Earlier this year, Exxon entered into another energy transition partnership, teaming up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

Last month, the company announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

3 Houstonians named to prestigious list of climate leaders

who's who

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.