The teams at this year's Energy Venture Day and Pitch Competition have collectively raised $435 million in funding. Photo courtesy of CERAWeek

Teams from around the world and right here in Houston took home prizes at the fourth annual Energy Venture Day and Pitch Competition at CERAWeek on March 12.

The fast-paced event, put on by Rice Alliance, Houston Energy Transition Initiative and TEX-E, invited 36 industry startups and five Texas-based student teams focused on driving efficiency and advancements toward the energy transition to present at 3.5-minute pitch before investors and industry partners during CERAWeek's Agora program. The competition is a qualifying event for the Startup World Cup, powered by Pegasus Venture, where teams compete for a $1 million investment prize.

The teams at this year's Energy Venture Day have collectively raised $435 million in funding.

Rice University student teams took home two of the three top prizes in the competition.

HEXASpec won the student track, known at TEX-E, taking home $25,000. The team's pitch focused on enhancing semiconductor chips’ thermal conductivity to boost computing power. Pattern Materials, another Rice-led team, claimed third place and won $10,000 for its proprietary LIG and LIGF technology that produces graphene patterns.

A team from the University of Texas McCombs School of Business, Nanoborne, took home second place and $15,000 for its engineering company focused on research and development in applied nanotechnology.

The companies that pitched in the three industry tracts competed for non-monetary awards. Here's who won:

Track A: Hydrogen, Fuel Cells, Buildings, Water, & Other Energy Solutions

Track B: Advanced Manufacturing, Materials, Fossil Energy, & Carbon Management

Track C: Industrial Efficiency, Decarbonization, Electricity, & the Grid

Arculus Solutions, which retrofits natural gas pipelines for safe hydrogen transportation, was named the overall winner and will move on to the Startup World Cup competition. California-based Membravo was also given a "golden ticket" to participate in the next NOV Supernova Accelerator cohort.

Teams at this year's Energy Venture Day represented five countries and 15 states. Click here to see the full list of companies and investor groups that participated.

The podcast, called Phases and Stages: The Texas Energy Story , will be hosted by Andy Uhler, who will visit a different Texas location every month to analyze the evolving energy landscape of the state. Photo via Getty Images

New podcast launches to shine light on changing energy landscape in Texas

streaming soon

The University of Texas at Austin's Energy Institute is premiering a Texas-focused energy transition podcast next month.

The podcast, called Phases and Stages: The Texas Energy Story— a nod to Willie Nelson's 17th studio album, is an hour-long, story-format podcast hosted by Andy Uhler, an Austin-based journalism fellow at the Columbia University Center on Global Energy Policy & University of Texas Energy Institute and former KUT Radio reporter.

In the first season, which premieres Wednesday, September 25, Uhler will visit a different Texas location every month to analyze the evolving energy landscape of the state.

"Today, Texas leads the nation in combined wind and solar production and will soon be home to a Gulf Coast hub promising to expand the clean hydrogen industry," reads UT's website. "New energy ventures are proliferating across the state as entrepreneurs seize the opportunity to leverage Texas’ energy infrastructure and expertise to bring promising new innovations to market. Even oil and gas companies are expanding into nontraditional sectors, as advanced technologies open up new possibilities."

UT estimates that nearly 1.4 million Texans are directly or indirectly supported by the oil and gas sector. The podcast sets out to examine questions about how new energy expansion in the Lone Star State will effect the lives of Texans, as well as how the local economies and job markets are expected to evolve.

"Traveling the state to gather first-hand accounts beyond the oil rig and the boardroom, award-winning public radio correspondent Andy Uhler speaks with farmers, school teachers, community members, and everyone in between to get a sense of what the energy transition means for Texans and their communities," the website continues.

The UT Energy Institute will host a launch event for Phases and Stages with Uhler on Wednesday, September 25, 5 to 7 pm, to celebrate the show's series premiere as part of EnergizeUT.

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

Rice University semiconductor researchers join DARPA-funded Texas team

innovation station

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site. Photo via utexas.edu

Texas hydrogen research hub brings on new corporate partner

howdy, partner

A Texas US Department of Energy initiative has added a new corporate player.

Hitachi Energy has joined the DOE's H2@Scale in Texas and Beyond initiative with GTI Energy, Frontier Energy, The University of Texas Austin, and others. The initiative, which opened earlier this year, plans to assist in “integrating utility-scale renewable energy sources with power grids and managing and orchestrating a variety of energy sources” according to a news release.

Most of the ‘H2@Scale project’s activities take place at University of Texas JJ Pickle Research Center in Austin. The project is part of a larger one to expand hydrogen’s role and help to decarbonize Texas. The ‘H2@Scale' project consists of multiple hydrogen production options like a vehicle refueling station alongside a fleet of hydrogen fuel cell vehicles.

Overall, the project is one of the largest collections of renewable hydrogen production, onsite storage, and end-use technologies that are all located at the same site.

Another larger goal is to investigate the efficiency and cost-effectiveness of hydrogen generation from renewable resources, which all aligns with the project’s vision of decarbonization efforts.

Hitachi Energy is part of the full hydrogen value chain from early-stage project origination and design. They also work to ensure grid compliance, power conversion systems and asset management solutions.

“Hitachi Energy is proud to be a key partner in the US Department of Energy’s ‘H2@Scale in Texas and Beyond’ project. The initiative comes at a pivotal moment in our commitment to advancing hydrogen production and its role in the evolving clean energy landscape,” Executive Vice President and Region Head of North America at Hitachi Energy Anthony Allard says in a news release. “As hydrogen emerges as a critical element in decarbonizing hard-to-abate industries, Hitachi Energy remains dedicated to drive innovation and sustainability on a global scale.”

Hitachi’s project teams will undertake feasibility studies for scaling up hydrogen production and use, which will aim to benefit the development of a strategic plan and implementation of the H2@Scale project in the Port of Houston and the region of the Gulf Coast. The teams will also seek opportunities to leverage prospective hydrogen users, pre-existing hydrogen pipelines, and large networks of concentrated industrial infrastructure. Then, they will work to identify environmental and economic benefits of hydrogen deployment in the area.

Earlier this year, Hitachi Energy teamed up with teamed up with Houston-based electrical transmission developer Grid United for a collaboration to work on high-voltage direct current technology for Grid United transmission projects. These projects will aim to interconnect the eastern and western regional power grids in the U.S. The Eastern Interconnection east of the Rocky Mountains, the Western Interconnection west of the Rockies and the Texas Interconnection run by the Electric Reliability Council of Texas, make up the three main power grids.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin. Photo via utexas.edu

Texas hydrogen research hub opens to support statewide, DOE-backed initiative

hi to hydrogen

A Texas school has cut the ribbon on a new hydrogen-focused research facility that will play a role in a statewide, Department of Energy-funded energy transition initiative.

The Center for Electromechanics at The University of Texas, Frontier Energy, Inc., and GTI Energy celebrated the grand opening of a hydrogen research and demonstration facility in Austin as part of the “Demonstration and Framework for H2@Scale in Texas and Beyond” project, which is supported by the DOE's Hydrogen and Fuel Cell Technologies Office.

The hydrogen proto-hub is first-of-its-kind and part of Texas-wide initiative for a cleaner hydrogen economy and will feature contributions from organizations throughout the state. The facility will generate zero-carbon hydrogen by using water electrolysis powered by solar and wind energy, and steam methane reformation of renewable natural gas from a Texas landfill.

The hydrogen will be used to power a stationary fuel cell for power for the Texas Advanced Computing Center, and it will also supply zero-emission fuel to cell drones and a fleet of Toyota Mirai fuel cell electric vehicles. This method will mark the first time that multiple renewable hydrogen supplies and uses have been networked at one location to show an economical hydrogen ecosystem that is scalable.

“The H2@Scale in Texas project builds on nearly two decades of UT leadership in hydrogen research and development” Michael Lewis, Research Scientist, UT Austin Center for Electromechanics, say in a news release. “With this facility, we aim to provide the educated workforce and the engineering data needed for success. Beyond the current project, the hydrogen research facility is well-positioned for growth and impact in the emerging clean hydrogen industry.”

Over 20 sponsors and industry stakeholders are involved and include Houston-based partners in Center for Houston’s Future and Rice University Baker Institute for Public Policy. Industry heavyweights like Chevron, Toyota, ConocoPhillips, and the Texas Commission on Environmental Quality are also part of the effort.

Texas hydrogen infrastructure and wind and solar resources position the state for clean hydrogen production, as evident in the recently released study, “A Framework for Hydrogen in Texas.” The study was part of a larger effort that started in 2020 with the H2@Scale project, which aims to develop clearer paths to renewable hydrogen as a “clean and cost-effective fuel” according to a news release. The facility will serve as an academic research center, and a model for future large-scale hydrogen deployments.

Participants in the DOE-funded HyVelocity Gulf Coast Hydrogen Hub will aim to gain insights from the H2@Scale project at UT Austin. The project will build towards a development of a comprehensive hydrogen network across the region. HyVelocity is a hub that includes AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Orsted, and Sempra Infrastructure. The GTI Energy administered HyVelocity involves The University of Texas at Austin, the Center for Houston’s Future, and Houston Advanced Research Center.

“H2@Scale isn't just about producing low-carbon energy, it's about creating clean energy growth opportunities for communities throughout Texas and the nation,” Adam Walburger, president of Frontier Energy, says in a news release. “By harnessing renewable energy resources to create zero-carbon hydrogen, we can power homes, businesses, transportation, and agriculture – all while creating jobs and reducing emissions.”

Houston's HyVelocity Hub has joined in on a joint letter with the other six H2Hubs asking for revised guidelines. Photo via Getty Images

Houston's clean hydrogen hub joins request to revise federal tax credit guidance

edits needed

The group of regional hubs tapped by the United States government to receive funding to develop clean hydrogen projects have banded together to request a revision of the U.S. Department of Treasury's proposed hydrogen production tax credit (45V) guidance.

Houston's HyVelocity Hub, which was selected to receive up to $1.2 billion from the government's initiative, has joined in on a joint letter with the other six H2Hubs asking for revised requirements. HyVelocity also submitted its own letter to the Treasury.

HyVelocity's letter asks for flexibility and certainty the implementation of the “three pillars” for electricity, which include temporality, incrementality, and deliverability.

"It is imperative that to enable the desired environmental, economic, and equity goals of the IRA, private investment in hydrogen production must advance at scale and at an accelerated pace. Hydrogen production project investments require stable market projections and assurance of regulatory stability to ensure the economics of the long-term projects. To support this investment environment, we recommend that projects be granted a 'grandfathered exemption' such that for the project's life, they can use the regulations in place at the time when construction begins," reads the letter from HyVelocity.

HyVelocity, representing the Gulf Coast region, plans to create up to 35,000 construction jobs and 10,000 permanent jobs across nine proposed core projects with a collective investment of more than $10 billion in private capital to bring low-carbon hydrogen to the market.

The Houston-area initiative is backed by industry partners AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Ørsted, and Sempra Infrastructure and The spearheaded by GTI Energy and other organizing participants, including the University of Texas at Austin, The Center for Houston’s Future, Houston Advanced Research Center, and around 90 other supporting partners from academia, industry, government, and beyond.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston renewables developer lands $85M for nationwide solar projects

fresh funding

Houston-based Catalyze, a developer of independent power systems, announced it has secured an $85 million tax equity investment from RBC Community Investments.

“RBC’s investment in this portfolio demonstrates our commitment to advancing clean energy solutions within local communities,” Jonathan Cheng, managing director at RBC, said in a news release. “We are excited to partner with Catalyze on the strategic deployment of these and future projects.”

The financing will go toward the construction and completion of 75 megawatts of commercial and industrial solar projects nationwide in 2025. Catalyze’s current generation portfolio now totals 300 megawatts of projects in operations and construction.

The transaction will help Catalyze’s existing relationship with RBC, which demonstrates a commitment to advancing renewable energy solutions at scale.

“RBC is a valued financing partner, and we are pleased to further expand our relationship with this latest investment,” Jared Haines, CEO of Catalyze, said in a news release. “This financing enables us to further our mission to bring scalable distributed generation projects to businesses and communities nationwide.”

Catalyze also has other private equity sponsors in EnCap Investments and Actis.

Last May, Catalyze announced that it secured $100 million in financing from NY Green Bank to support a 79-megawatt portfolio of community distributed generation solar projects across New York state.

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.