tapping into tech

Houston company names new tech partner on projects aimed at increasing grid reliability

Grid United announced a new partnership with Hitachi Energy that it's entered into a collaboration to work on high-voltage direct current technology for Grid United transmission projects. Photo via hitachienergy.com

A Houston company has tapped a new tech partner to work on projects that are expected to help boost transmission capacity across the U.S. amidst increased, continued demands for energy.

Houston-based electrical transmission developer Grid United and Hitachi Energy announced at CERAWeek that it's entered into a collaboration to work on high-voltage direct current technology for Grid United transmission projects. These projects will aim to interconnect the eastern and western regional power grids in the U.S. The Eastern Interconnection east of the Rocky Mountains, the Western Interconnection west of the Rockies and the Texas Interconnection run by the Electric Reliability Council of Texas, make up the three main power grids.

This technology and these projects play a key role in the U.S. government’s commitment to accelerating the energy transition, which includes the priorities of the U.S. Department of Energy. The collaboration is considered a capacity reservation agreement in which Hitachi Energy will provide HVDC technology to support the development of multiple Grid United HVDC interconnections. The interconnections aim to mitigate the impact of extreme events and accommodate demands for electricity.

“With industry leading HVDC technology and a global track record, Hitachi Energy is a needed collaborator for the development of a more resilient and reliable electric power grid,” Michael Skelly, CEO and co-founder of Grid United, says in a news release. “By working with companies like Hitachi Energy and partnering with incumbent utilities, we’re confident we can quicken the pace of modernizing and strengthening the U.S. electric grid to meet rapidly increasing electricity demand.”

The multi-contract framework is one of the first of new business models, which allows Hitachi Energy to plan in “advance to increase manufacturing capacity, expand and train the workforce, and maximize standardization to increase efficiency between successive projects” according to a news release.

We are proud to collaborate with Grid United to strengthen the U.S. power grid, making it more flexible, reliable, and secure,” Managing Director of Grid Integration Business Niklas Persson says in a news release. “By applying our innovative new business model which enables speed and scale in the supply chain, we are confident we can make important contributions to streamlining the development process to help accelerate the energy transition.”

Trending News

A View From HETI

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News