tapping into tech

Houston company names new tech partner on projects aimed at increasing grid reliability

Grid United announced a new partnership with Hitachi Energy that it's entered into a collaboration to work on high-voltage direct current technology for Grid United transmission projects. Photo via hitachienergy.com

A Houston company has tapped a new tech partner to work on projects that are expected to help boost transmission capacity across the U.S. amidst increased, continued demands for energy.

Houston-based electrical transmission developer Grid United and Hitachi Energy announced at CERAWeek that it's entered into a collaboration to work on high-voltage direct current technology for Grid United transmission projects. These projects will aim to interconnect the eastern and western regional power grids in the U.S. The Eastern Interconnection east of the Rocky Mountains, the Western Interconnection west of the Rockies and the Texas Interconnection run by the Electric Reliability Council of Texas, make up the three main power grids.

This technology and these projects play a key role in the U.S. government’s commitment to accelerating the energy transition, which includes the priorities of the U.S. Department of Energy. The collaboration is considered a capacity reservation agreement in which Hitachi Energy will provide HVDC technology to support the development of multiple Grid United HVDC interconnections. The interconnections aim to mitigate the impact of extreme events and accommodate demands for electricity.

“With industry leading HVDC technology and a global track record, Hitachi Energy is a needed collaborator for the development of a more resilient and reliable electric power grid,” Michael Skelly, CEO and co-founder of Grid United, says in a news release. “By working with companies like Hitachi Energy and partnering with incumbent utilities, we’re confident we can quicken the pace of modernizing and strengthening the U.S. electric grid to meet rapidly increasing electricity demand.”

The multi-contract framework is one of the first of new business models, which allows Hitachi Energy to plan in “advance to increase manufacturing capacity, expand and train the workforce, and maximize standardization to increase efficiency between successive projects” according to a news release.

We are proud to collaborate with Grid United to strengthen the U.S. power grid, making it more flexible, reliable, and secure,” Managing Director of Grid Integration Business Niklas Persson says in a news release. “By applying our innovative new business model which enables speed and scale in the supply chain, we are confident we can make important contributions to streamlining the development process to help accelerate the energy transition.”

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News