Q&A

Why this organization is focused on cultivating the future of energy transition innovation

David Pruner, executive director of TEX-E, joins the Houston Innovator Podcast. Photo via LinkedIn

David Pruner is laser focused on the future workforce for the energy industry as executive director of the Texas Entrepreneurship Exchange for Energy, known as TEX-E, a nonprofit housed out of Greentown Labs that was established to support energy transition innovation at Texas universities.

TEX-E launched in 2022 in collaboration with Greentown Labs, MIT’s Martin Trust Center for Entrepreneurship, and five university partners — Rice University, Texas A&M University, Prairie View A&M University, University of Houston, and The University of Texas at Austin.

Pruner was officially named to his role earlier this year, but he's been working behind the scenes for months now getting to know the organization and already expanding its opportunities from students across the state at the five institutions.

"Our mission is to create the next generation of energy transition climatetech entrepreneurs and intrapreneurs — they don’t all have to start companies," he says on the Houston Innovators Podcast.

Listen to the show below and read through a brief excerpt from the episode with Pruner.


EnergyCapital: Can you share a little bit about the origin of TEX-E?

David Puner: There were a variety of factories that led to its creation, but the seminal event was a piece of work that had been done for the Greater Houston Partnership by McKinsey on the future of Houston. It showed that if Houston isn't careful and doesn't make sure to go ahead and transition with this energy expansion we’re seeing, that they’re at risk of losing hundreds of thousands of jobs. If they catch the transition right and make the conversion to cleaner and low-carbon fuels, they can actually gain 1.4 million jobs.

It was this eye opener for everyone that we need to make sure that if the energy transition is going to happen, it needs to happen here so that Houston stays the energy capital of the world.

David Baldwin (partner at SCF Partners) literally at the meeting said, “listen I've got the beginning of the funnel — the universities, that’s where innovation comes from.” From that, TEX-E was born.

EC: How are you working with the five founding universities to connect the dots for collaboration?

DP: In the end, we have five different family members who need to be coordinated differently. The idea behind TEX-E is that there's plenty of bright students at each of these schools, and there's plenty of innovation going on, it's whether it can grow, prosper, and be sustainable.

Our main job is to look to connect everyone, so that an engineer at Texas A&M that has an idea that they want to pursue, but they don't know the business side, can meet that Rice MBA. Then, when they realize it's going to be a highly regulated product, we need a regulatory lawyer at UT — we can make all that happen and connect them.

At the same time, what we found is, no one school has the answer. But when you put them together, we do have most of the answer. Almost everything we need is within those five schools. And it's not just those five schools, it really is open to everyone.

EC: As you mentioned before, TEX-E started as a way for Houston to take the reins of its energy transition. What's the pulse on that progress?

DP: I spent the last decade building boards and hiring CEOs for all kinds of energy companies and there was the period I would say — pre-pandemic and a little bit into the pandemic — where not everybody was on board with climate change and the issue of carbon. The nice thing now is that’s fully in the rearview mirror. There’s not really a company of any size or a management team of any major entity that doesn’t fully believe they need to do something there.

The train has fully left the station — and picked up speed — on this whole issue of transition and climate. So, that’s been nice to see and create a lot of tailwinds.

———

This conversation has been edited for brevity and clarity.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News