In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S. Photo via Getty Images

Two Houston companies have received federal funding to develop carbon capture and storage projects.

Evergreen Sequestration Hub LLC, a partnership of Houston-based Trace Carbon Solutions and Jacksonville, Mississippi-based Molpus Woodlands Group, got more than $27.8 million from the U.S. Department of Energy for its Evergreen Sequestration Hub project in Louisiana. DOE says the project is valued at $34.8 million.

The hub will be built on about 20,000 acres of timberland in Louisiana’s Calcasieu and Beauregard parishes for an unidentified customer. It’ll be capable of storing about 250 million metric tons of carbon dioxide.

Trace Carbon Solutions, a subsidiary of Trace Midstream Partners, is developing CCS assets and supporting midstream infrastructure across North America. Molpus, an investment advisory firm, buys, manages, and sells timberland as an investment vehicle for pension funds, college endowments, foundations, insurance companies, and high-net-worth investors.

Another Houston company, RPS Expansion LLC, has received $9 million from the DOE to expand the River Parish Sequestration Project. Following the expansion, the project will be able to store up to 384 million metric tons of carbon dioxide. The CCUS hub is between Baton Rouge and New Orleans.

DOE says the River Parish expansion is valued at $11.8 million.

Also receiving DOE funding is a CCUS project to be developed off the coast of Corpus Christi. The developer is the Southern States Energy Board, based in Peachtree Corners, Georgia.

DOE is chipping in more than $51.1 million for the nearly $64 million hub. It’s estimated that about 35 million metric tons of carbon dioxide emissions are released each year from about 50 industrial and power facilities within a 100-mile radius of Mustang Island. Port Aransas is located on the 18-mile-long island.

In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S.

“The funding … will help ensure that carbon storage projects — crucial to slashing harmful carbon pollution — are designed, built, and operated safely and responsibly across all phases of development to deliver healthier communities as well as high-quality American jobs,” Brad Crabtree, assistant DOE secretary for fossil energy and carbon management, says in a news release.

Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub. Photo via 1pointfive.com

Oxy, Enterprise Products Partners to collaborate on carbon dioxide pipeline system for Texas project

coming soon

Occidental Petroleum’s carbon capture, utilization, and sequestration (CCUS) subsidiary has tapped another Houston-based company to develop a carbon dioxide pipeline and transportation network for one of its CCUS hubs.

Under its deal with Occidental, pipeline company Enterprise Products Partners will create a carbon dioxide pipeline system for 1PointFive’s Bluebonnet Sequestration Hub, which will span more than 55,000 acres in Chambers, Liberty, and Jefferson counties. The hub will be able to hold about 1.2 billion metric tons of carbon dioxide. The new pipeline network will be co-located with existing pipelines.

Enterprise Products Partners also will supply fee-based services for transporting CO2 emissions from industrial facilities near the Houston Ship Channel to the Bluebonnet hub.

“This agreement pairs our expertise managing large volumes of CO2 with Enterprise’s decades of midstream experience to bring confidence to industrial customers seeking a decarbonization solution,” Jeff Alvarez, president of 1PointFive’s sequestration business, says in a news release.

The Bluebonnet Sequestration Hub recently received funding from the U.S. Department of Energy (DOE) to help cover development costs.

“This hub is located between two of the largest industrial corridors in Texas so captured CO2 can be efficiently transported and safely sequestered,” Alvarez said in 2023. “Rather than starting from scratch with individual capture and sequestration projects, companies can plug into this hub for access to shared carbon infrastructure.”

Baker Hughes has incorporated a new tech platform for its CCUS operations. Photo via Getty Images

Baker Hughes launches new digital platform for CCUS operations

now online

Baker Hughes has announced the debut of its digital platform to track CO2 volumes in real time, CarbonEdge. CarbonEdge utilizes carbon capture utilization and sequestration journey, which includes pipeline flows.

Powered by Cordant, the Houston-based Baker Hughes boasts CarbonEdge is “the first end-to-end, risk-based digital platform for CCUS operations that provides comprehensive support, regulatory reporting, and operational risk management,” according to the company.

The connectivity across the entire CCUS project lifecycle will assist customers to better improve decision-making, enhance operational efficiency, identify and manage risk, and simplify regulatory reporting. Applicable to any CCUS infrastructure applied across multiple industries, CarbonEdge joins other Baker Hughes’ digital solutions in JewelSuite, Leucipa, and Cordant, which all span the energy and industrial value chains to help ensure lower emissions.

“CCUS technology solutions are essential for driving decarbonization of the energy and industrial sectors on our path to solving for climate change,” Baker Hughes Chairman and CEO Lorenzo Simonelli says in a news release.

The launch customer will be Wabash Valley Resources (WVR), which is a low-carbon ammonia fertilizer pioneer in Indiana.WVR will deploy Baker Hughes’ CarbonEdge platform to monitor, measure, and verify volumes of CO2 transported, collected, and sequestered underground.

“With the launch of CarbonEdge, we not only expand our portfolio of digital solutions to support new energies and empower our customers’ ability to mitigate risk while enhancing operational efficiency, but also take a bold step toward a future with more sustainable energy development,” Simonelli continues.”We look forward to working alongside Wabash Valley Resources to refine and evolve CarbonEdge, ensuring it continues to meet the dynamic needs of a rapidly changing industry.”
Recently, two HETI members announced acquisition and investment into carbon capture businesses. Photo via htxenergytransition.org

2 Houston energy leaders bet on carbon capture with recent acquisitions

the view from heti

CCUS will play a pivotal role in the global energy transition by decarbonizing carbon-intensive industries, including energy, chemicals, cement, and steel. CCUS is one of the few proven technologies to significantly lower net emissions. However, the unique nature of decarbonization presents many complex challenges. With greater funding and growing policy support, the widespread adoption of CCUS technologies is becoming more technically feasible and economically viable than ever before.

Houston, with its existing CCUS infrastructure, large concentration of CCUS expertise, and high storage capacity, is the ideal location to deploy and derisk CCUS projects at unprecedented speed and scale. Recently, two HETI members announced acquisition and investment into carbon capture businesses.

SLB + Aker Carbon Capture (ACC)

SLB, a pioneer in carbon capture technologies, announced an agreement to acquire major ownership in Aker Carbon Capture (ACC), a pure-play carbon capture company. The move combines SLB’s established CCUS business with ACC’s innovative CCUS technology to support accelerated industrial decarbonization at scale.

“For CCUS to have the expected impact on supporting global net-zero ambitions, it will need to scale up 100-200 times in less than three decades,” said Olivier Le Peuch, chief executive officer, SLB. “Crucial to this scale-up is the ability to lower capture costs, which often represent as much as 50-70% of the total spend of a CCUS project. We are excited to create this business with ACC to accelerate the deployment of carbon capture technologies that will shift the economics of carbon capture across high-emitting industrial sectors.”

Chevron New Energies + ION Clean Energy

Chevron New Energies, a division of Chevron U.S.A. Inc., announced a lead investment in ION Clean Energy (ION), which provides post-combustion point-source capture technology through its third-generation ICE-31 liquid amine system. This investment expands and complements Chevron’s growing portfolio of CCUS technologies.

“ION’s solvent technology, combined with Chevron’s assets and capabilities, has the potential to reach numerous emitters and support our ambitions of a lower carbon future,” said Chris Powers, vice president of CCUS & Emerging, Chevron New Energies. “We believe collaborations like this are essential to our efforts to grow carbon capture on a global scale.”

“This investment from Chevron is a huge testament to the hard work of our team and the potential of our technology,” said ION founder and executive chairman Buz Brown. “We appreciate their collaboration and with their investment we expect to accelerate commercial deployment of our technology so that we can realize the kind of wide-ranging commercial and environmental impact we’ve long envisioned.”

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

In a series of fireside chats, Houston energy leaders took the stage at OTC to discuss what their companies are doing in the energy transition space. Photo via LinkedIn

4 Houston energy execs sound off on future workforce, collaboration, and more at OTC

overheard

In addition to the massive exhibit floor, networking, and panels, the 2024 Offshore Technology Conference hosts thoughtful fireside chats with energy leaders throughout the ongoing conference taking place in Houston this week.

Four energy leaders from Houston took the stage to discuss what their companies are doing within the energy transition. Take a look at what topics each of the conversations tackled.

Chris Powers, vice president of CCUS at Chevron New Energies, on energy evolution and collaboration

Chris Powers introduced Chevron New Energies, an organization within Chevron that launched in 2021, to the crowd at OTC, describing the entity's focus points as CCUS, hydrogen, offsets and emerging technology, and renewable fuels — specifically things Chevron believes it has the competitive advantage.

One of the things Powers made clear in his fireside chat is that it's not going to be one, two, or even three technologies to significantly move the energy transition along, "it's going to take all the solutions to meet all the growing energy needs," he said.

And, he continued, this current energy transition the world is in isn't exactly new.

"We've been evolving our energy supply since the dawn of man," he said. "Our view is that the world has always been in an energy evolution."

"Hydrocarbons will continue to play a huge role in the years to come, and anyone who has a different view on that I think isn't being pragmatic," he continued.

Chevron has played a role in the clean energy market for decades, Powers said, pointing out Chevron Technology Ventures, which launched in the 1990s.

"No one can do this alone," he said, pointing specifically to the ongoing Bayou Bend joint venture that Chevron is working on with Equinor and TotalEnergies. "We have to bring together the right partners and the right skill sets."

Celine Gerson, group director, Americas, and president at Fugro USA, on the importance of data

Celine Gerson set the scene for Fugro, a geo data and surveying company that diversified its business beginning in 2015 to account for the energy transition. From traditional oil and gas to renewables, "it starts with the geo data," she said during her chat. She said big projects can't map out their construction without it, and then, when it comes to maintaining the equipment, the geo data is equally important.

Another message Gerson wanted to convey is that the skill sets from traditional offshore services translate to renewables. Fugro's employee base has evolved significantly over the past few years, and Gerson said that 50 percent of the workforce was hired over the past five years and 85 percent of the leadership has changed in the past seven.

Agility is what the industry needs, Celine Gerson said, adding that the "industry need to move fast and, in order to move fast, we need to look at things differently.

Attilio Pisoni, CTO of oilfield services and equipment at Baker Hughes, on the future workforce

In addition to the world making changes toward sustainability, the energy industry is seeing a workforce evolution as well, Attilio Pisoni said during his fireside chat, adding that inspiring a workforce is key to retention and encouraging innovation.

"We have a challenge in attracting young people," Pisoni said. "To be successful, you have to have a purpose."

That purpose? Combating climate change. And that, Pisoni said, needs to be able to be quantified. "As a society over all, we need to have a standard of measurement and accuracy in reporting," he said.

To future engineers, Pisoni emphasized the importance of learning outside your specific niche.

"Having seen where the world is now, whatever you study, have a concept and understanding of the system as a whole," he said.

Erik Oswald, vice president of advocacy and policy development at ExxonMobil Low Carbon Solutions, on transferable skills from upstream

When he looks at renewables and new energy, Erik Oswald said he sees a significant similarity for the talent and skill sets required in upstream oil and gas.

"A lot of the same skills are coming into focus" within the energy transition," Oswald said, specifying CCS and upstream.

Even in light of the transferrable workforce, the industry faces needs to grow its workforce in a significant way to keep up with demand — and keeping in mind the younger generations coming onto the scene.

"We're talking about recreating the entire oil and gas industry," Oswald said on preparing the workforce for the future of the energy industry. "We have to do it, it's not an option."

Boulder, Colorado-based ION Clean Energy announces it has raised $45 million in financing. Photo via Getty Images

Chevron backs carbon capture tech company in $45M investment round

fresh funding

Chevron New Energies has a new cleantech company in its portfolio.

Boulder, Colorado-based ION Clean Energy announces it has raised $45 million in financing. The round was led by Chevron New Energies with participation from New York-based Carbon Direct Capital. Founded in 2008, ION's carbon dioxide capture technologies lower costs and make CO2 capture a more viable option for hard-to-abate emissions.

“We have truly special solvent technology. It is capable of very high capture efficiency with low energy use while simultaneously being exceptionally resistant to degradation with virtually undetectable emissions. That’s a pretty powerful combination that sets us apart from the competition. The investments from Chevron and Carbon Direct Capital are a huge testament to the hard work of our team and the potential of our technology,” ION founder and Executive Chairman Buz Brown says in a news release. “We appreciate their collaboration and with their investments we expect to accelerate commercial deployment of our technology so that we can realize the kind of wide-ranging commercial and environmental impact we’ve long envisioned.”

The funding will go toward ION’s organizational growth and commercial deployment of its ICE-31 liquid amine carbon capture technology.

“We continue to make progress on our goal to deliver the full value chain of carbon capture, utilization, and storage (CCUS) as a business, and we believe ION is a part of this solution. ION has consistent proof points in technology performance, recognition from the Department of Energy, partnerships with global brands, and a strong book of business that it brings to the relationship,” Chris Powers, vice president of CCUS and emerging with CNE, says in the release. “ION’s solvent technology, combined with Chevron’s assets and capabilities, has the potential to reach numerous emitters and support our ambitions of a lower carbon future. We believe collaborations like this are essential to our efforts to grow carbon capture on a global scale.”

With the new investment, the company announced that Timothy Vail will join the company as CEO. He previously was CEO of Arbor Renewable Gas and founder and CEO of G2X Energy Inc. He also serves as an Operating Partner for OGCI Climate Investments.

"With these investments, we are well positioned to grow ION into a worldwide provider of high-performance point source capture solutions,” Vail says. “This capital allows us to accelerate the commercial deployment of our carbon capture technology.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”

Houston expert: The role of U.S. LNG in global energy markets

guest column

The debate over U.S. Liquefied Natural Gas (LNG) exports is too often framed in misleading, oversimplified terms. The reality is clear: LNG is not just a temporary fix or a bridge fuel, it is a fundamental pillar of global energy security and economic stability. U.S. LNG is already reducing coal use in Asia, strengthening Europe’s energy balance, and driving economic growth at home. Turning away from LNG exports now would be a shortsighted mistake, undermining both U.S. economic interests and global energy security.

Ken Medlock, Senior Director of the Baker Institute’s Center for Energy Studies, provides a fact-based assessment of the U.S. LNG exports that cuts through the noise. His analysis, consistent with McKinsey work, confirms that U.S. LNG is essential to balancing global energy markets for the decades ahead. While infrastructure challenges and environmental concerns exist, the benefits far outweigh the drawbacks. If the U.S. fails to embrace its leadership in LNG, we risk giving up our position to competitors, weakening our energy resilience, and damaging national security.

LNG Export Licenses: Options, Not Guarantees

A common but deeply flawed argument against expanding LNG exports is the assumption that granting licenses guarantees unlimited exports. This is simply incorrect. As Medlock puts it, “Licenses are options, not guarantees. Projects do not move forward if they are unable to find commercial footing.”

This is critical: government approvals do not dictate market outcomes. LNG projects must navigate economic viability, infrastructure feasibility, and global demand before becoming operational. This reality should dispel fears that expanded licensing will automatically lead to an uncontrolled surge in exports or domestic price spikes. The market, not government restrictions, should determine which projects succeed.

Canada’s Role in U.S. Gas Markets

The U.S. LNG debate often overlooks an important factor: pipeline imports from Canada. The U.S. and Canadian markets are deeply intertwined, yet critics often ignore this reality. Medlock highlights that “the importance to domestic supply-demand balance of our neighbors to the north and south cannot be overstated.”

Infrastructure Constraints and Price Volatility

One of the most counterproductive policies the U.S. could adopt is restricting LNG infrastructure development. Ironically, such restrictions would not only hinder exports but also drive up domestic energy prices. Medlock’s report explains this paradox: “Constraints that either raise development costs or limit the ability to develop infrastructure tend to make domestic supply less elastic. Ironically, this has the impact of limiting exports and raising domestic prices.”

The takeaway is straightforward: blocking infrastructure development is a self-inflicted wound. It stifles market efficiency, raises costs for American consumers, and weakens U.S. competitiveness in global energy markets. McKinsey research confirms that well-planned infrastructure investments lead to greater price stability and a more resilient energy sector. The U.S. should be accelerating, not hindering, these investments.

Short-Run vs. Long-Run Impacts on Domestic Prices

Critics of LNG exports often confuse short-term price fluctuations with long-term market trends. This is a mistake. Medlock underscores that “analysis that claims overly negative domestic price impacts due to exports tend to miss the distinction between short-run and long-run elasticity.”

Short-term price shifts are inevitable, driven by seasonal demand and supply disruptions. But long-term trends tell a different story: as infrastructure improves and production expands, markets adjust, and price impacts moderate. McKinsey analysis suggests supply elasticity increases as producers respond to price signals. Policy decisions should be grounded in this broader economic reality, not reactionary fears about temporary price movements.

Assessing the Emissions Debate

The argument that restricting U.S. LNG exports will lower global emissions is fundamentally flawed. In fact, the opposite is true. Medlock warns against “engineering scenarios that violate basic economic principles to induce particular impacts.” He emphasizes that evaluating emissions must be done holistically. “Constraining U.S. LNG exports will likely mean Asian countries will continue to turn to coal for power system balance,” a move that would significantly increase global emissions.

McKinsey’s research reinforces that, on a lifecycle basis, U.S. LNG produces fewer emissions than coal. That said, there is room for improvement, and efforts should focus on minimizing methane leakage and optimizing gas production efficiency.

However, the broader point remains: restricting LNG on environmental grounds ignores the global energy trade-offs at play. A rational approach would address emissions concerns while still recognizing the role of LNG in the global energy system.

The DOE’s Commonwealth LNG Authorization

The Department of Energy’s recent conditional approval of the Commonwealth LNG project is a step in the right direction. It signals that economic growth, energy security, and market demand remain key considerations in regulatory decisions. Medlock’s analysis makes it clear that LNG exports will be driven by market forces, and McKinsey’s projections show that global demand for flexible, reliable LNG is only increasing.

The U.S. should not limit itself with restrictive policies when the rest of the world is demanding more LNG. This is an opportunity to strengthen our position as a global energy leader, create jobs, and ensure long-term energy security.

Conclusion

The U.S. LNG debate must move beyond fear-driven narratives and focus on reality. The facts are clear: LNG exports strengthen energy security, drive economic growth, and reduce global emissions by displacing coal.

Instead of restrictive policies that limit LNG’s potential, the U.S. should focus on expanding infrastructure, maintaining market flexibility, and supporting innovation to further reduce emissions. The energy transition will be shaped by market realities, not unrealistic expectations.

The U.S. has an opportunity to lead. But leadership requires embracing economic logic, investing in infrastructure, and ensuring our policies are guided by facts, not political expediency. LNG is a critical part of the global energy landscape, and it’s time to recognize its long-term strategic value.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.