ccus news

DOE dishes out funding to 2 Houston carbon caption projects

In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S. Photo via Getty Images

Two Houston companies have received federal funding to develop carbon capture and storage projects.

Evergreen Sequestration Hub LLC, a partnership of Houston-based Trace Carbon Solutions and Jacksonville, Mississippi-based Molpus Woodlands Group, got more than $27.8 million from the U.S. Department of Energy for its Evergreen Sequestration Hub project in Louisiana. DOE says the project is valued at $34.8 million.

The hub will be built on about 20,000 acres of timberland in Louisiana’s Calcasieu and Beauregard parishes for an unidentified customer. It’ll be capable of storing about 250 million metric tons of carbon dioxide.

Trace Carbon Solutions, a subsidiary of Trace Midstream Partners, is developing CCS assets and supporting midstream infrastructure across North America. Molpus, an investment advisory firm, buys, manages, and sells timberland as an investment vehicle for pension funds, college endowments, foundations, insurance companies, and high-net-worth investors.

Another Houston company, RPS Expansion LLC, has received $9 million from the DOE to expand the River Parish Sequestration Project. Following the expansion, the project will be able to store up to 384 million metric tons of carbon dioxide. The CCUS hub is between Baton Rouge and New Orleans.

DOE says the River Parish expansion is valued at $11.8 million.

Also receiving DOE funding is a CCUS project to be developed off the coast of Corpus Christi. The developer is the Southern States Energy Board, based in Peachtree Corners, Georgia.

DOE is chipping in more than $51.1 million for the nearly $64 million hub. It’s estimated that about 35 million metric tons of carbon dioxide emissions are released each year from about 50 industrial and power facilities within a 100-mile radius of Mustang Island. Port Aransas is located on the 18-mile-long island.

In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S.

“The funding … will help ensure that carbon storage projects — crucial to slashing harmful carbon pollution — are designed, built, and operated safely and responsibly across all phases of development to deliver healthier communities as well as high-quality American jobs,” Brad Crabtree, assistant DOE secretary for fossil energy and carbon management, says in a news release.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News