EnCap is ready to deploy growth capital to advance the energy transition. Photo via Getty Images

A Houston-based energy transition-focused growth capital firm announced the close of its second fund to the tune of $1.5 billion.

EnCap Energy Transition's Fund II, or EETF II, was created to invest in solutions to decarbonize the power industry, and invest in low carbon fuels and carbon management.This second energy transition fund follows EnCap Energy Transition Fund I, a $1.2 billion fund that deployed capital to seven material portfolio company investments and four fund realizations with Broad Reach Power, Jupiter Power, Triple Oak, and Paloma Solar & Wind.

Previously, the company made investment commitments to five portfolio companies through EETF II, including Bildmore Renewables, Linea Energy, Parliament Solar, Power Transitions, and Arbor Renewable Gas. With the Bildmore arm, the EnCap fund aims to fuel development of renewable energy projects that can’t attract traditional tax equity financing.

EnCap expects to have 8-10 portfolio companies in EETF II in total.

"The EnCap Energy Transition team is proud to have raised a sizeable pool of capital to continue to invest in the opportunity created by the shift to a lower-carbon energy system,” EnCap Energy Transition Managing Partner Jim Hughes says in a news release.

“We greatly appreciate the strong support from our existing investor base and are pleased to have added a number of new, high-quality investors, both domestically and internationally," he continues. "Since our inception in 2019, we now manage approximately $2.7 billion of capital commitments to invest in decarbonization and are excited for the opportunities ahead of us."

Recently,EnCap was part of a deal in the battery energy storage business carrying an equity value of more than $1 billion. Engie purchased the majority of a startup . Broad Reach’s battery storage business from EnCap Energy Transition Fund I. Broad Reach launched in 2019 with backing from EnCap.

“We continue to believe all sources of energy are needed to support the world’s growing energy needs and that our Energy Transition Team will build off the significant success achieved to date,” said EnCap Managing Partner Jason DeLorenzo in a news release.


This article originally ran on InnovationMap.

Houston-based Milestone Environmental Services, which provides environmental services and carbon management, named energy leader and former Chevron executive Barbara J. Burger to its board of managers. Photo courtesy

Environmental services firm names Houston energy leader to board


Barbara Burger has joined the board of one of the largest energy waste sequestration companies.

Houston-based Milestone Environmental Services, which provides environmental services and carbon management, named energy leader and former Chevron executive Barbara J. Burger to its board of managers, effective February 17.

“I am very pleased to welcome Dr. Barbara Burger to the Milestone Board and look forward to her invaluable insights and contributions,” Milestone President and CEO Gabriel Rio says in a news release. “Barbara’s impressive career in the energy industry coupled with her passion for education, sustainability, and resolving the challenges facing the energy transition will undoubtedly prove beneficial for Milestone, our customers, and our other stakeholders.”

Burger, who previously served as vice president of innovation at Chevron and president of Chevron Technology Ventures, also holds adviser roles and board positions at other innovative companies.

“I look forward to working with the Milestone team as they build on their leading environmental services business and develop an energy transition-critical carbon capture and sequestration business,” Burger adds.

Burger, who was awarded InnovationMap's inaugural Trailblazer Award in 2021, is senior adviser to Lazard, on the board of directors of Heliogen, and more. She also actively serves the National Renewable Energy Laboratory, Activate, and the Houston Symphony.

Last fall, Milestone Environmental Services announced that it has been acquired by affiliates of SK Capital Partners for an undisclosed amount.

Learn more about the specific missions the Houston Energy Transition Initiative is focused on — from carbon management to finding funding. Photo via htxenergytransition.com

Houston: Where energy leaders create a low-carbon future

the view from heti

Houston is the energy capital of the world, and it faces a dual challenge: fulfilling growing global energy demand while actively reducing carbon dioxide emissions.

This is why energy leaders have come together at the Houston Energy Transition Initiative, within the Greater Houston Partnership, to strengthen the region’s position for an energy-abundant, low-carbon future. HETI’s impact work is conducted through sector-specific working groups that leverage Houston’s competitive advantage. These working groups include: Carbon Capture, Use and Storage (CCUS), Clean Hydrogen, Capital Formation, Power Management, and Industry Decarbonization.

Texas Gulf Coast as a hub for carbon management

The International Energy Agency (IEA) states that CCUS is a requirement to any realistic pathway to a low-carbon, even net-zero future. This is especially true in the Houston area, which is home to one of the nation’s largest concentrated sources of carbon dioxide. Houston has the geology, knowledge, and infrastructure to support CCUS at scale. The CCUS Working Group at HETI supports key policy enablers of scaling CCUS, including supporting the state to earn permitting authority (primacy) over carbon capture (Class VI) wells. The working group is also analyzing the cumulative impacts of carbon capture on the region’s existing infrastructure and identifying key infrastructure needs for CCUS to reach scale.

Gulf Coast preparing for clean hydrogen liftoff

The Clean Hydrogen working group has created an ecosystem for Houston to lead the clean hydrogen market. The Texas Gulf Coast region is currently home to the world’s largest hydrogen system. By assessing the impact of hydrogen on the economy and the environment, this working group is positioning Houston to be a leading clean hydrogen hub.

Houston as a leader in Industry decarbonization

Houston needs technologies including but not limited to clean hydrogen and CCUS for decarbonization. The HETI Decarbonization Working Group partners with the Mission Possible Partnership and Rocky Mountain Institute to provide a measurable baseline of emissions and identify recommendations for decarbonization pathways in the Houston region.

An energy-abundant, low-carbon future will impact our region’s power management

It is expected that there will be changes in supply and demand of electricity associated with proposed energy transition and decarbonization projects in the Houston area. HETI has partnered with Mission Possible Partnership and Rocky Mountain Institute to assess the impact of energy transition and decarbonization on the growth and resilience of Houston’s regional power grid and the transmission and distribution of energy.

Making Houston a hub for energy transition finance

Financing energy projects is extremely capital intensive. Houston currently serves as a hub for implementing new technologies, and it has the potential to become a major center for financing innovative energy solutions. This includes everything from more efficient, lower-carbon production of existing resources to technological breakthroughs in energy efficiency, renewables, energy storage, and nature-based solutions. For technological breakthroughs, Houston needs a consistent flow of capital to the region, including sources and financing models from venture capital to growth capital, to debt markets and government grants. HETI’s Capital Formation Working Group has mapped inflows and outflows of capital for the energy transition in Houston and found that we need to grow Houston’s capital inflows ten times by 2040 to $150 billion per year to lead the transition. The Working Group regularly convenes for learning sessions on capital markets.

Over the last year, HETI’s working groups have moved from strategy to impact. To learn more about the outcomes of these working groups, check out these resources.


This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Joseph Powell, founding director of UH Energy Transition Institute, discusses the institute's role in the clean energy landscape and their corporate partnerships. Photo via uh.edu

University of Houston's energy transition exec unpacks future of institute, partnerships, and more


Joseph Powell is about six months into his role as the founding director of the University of Houston’s Shell-backed Energy Transition Institute but already is eyeing how the Institute can aid generations to come through clean energy.

The Energy Transition Institute, which launched a year ago through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc., is focused on three core areas of clean energy: hydrogen, carbon management, and circular plastics. Powell previously served as chief scientist for Shell as a chemical engineer and has co-invented 60 granted patents.

Powell discussed with EnergyCapital the projects ETI is excited for, opportunities for students to get involved, and their partnership with corporations.

EnergyCapitalHTX: To get started with a little bit of background, the University of Houston Energy Transition Institute was established in March 2020 with a $10 million commitment from Shell. So why did the university decide now is the time for an institute like this to be formed?

Joseph Powell: Houston is the energy capital, and the energy transition has been on everyone's mind, and so certainly now is the right time for an offering to industry to look at how to coordinate activities in that space. We reached out to Shell, which has really made strong commitments in terms of making the pivot from being an oil and gas company to being an energy company and really embracing the energy transition and everything that goes along with that. There was a strong relationship between University of Houston and Shell on the recruitment side, so a number of the Shell staff and employees. UH has been one of the principal suppliers of talent to Shell as an organization, also on the research side in terms of research around hydrogen chemical reaction engineering, and other aspects on the social and community benefits side of what happens with energy. So, there's been quite a bit of overlap. I think Shell saw it as really important to be partnering in the energy capital of the world, to be providing that pipeline of talent for what's going to be needed for the energy transition.

EC: You decided to come to UH to lead the Energy Transition Institute over retiring. What inspired you to take on this role? What’s your vision for the organization?

JP: It was an opportunity I couldn't pass up. I had worked 36 years in the industry, for Exxon and 32 years with Shell. The elements of the Energy Transition Institute were something that I was very passionate about working on with Shell, since I've been promoted to chief scientist of chemical engineering for the growth global group in 2006. I was involved in helping Shell set its strategy to become a full energy company and chemicals, not just oil and gas. I was involved in the elements of that transition, and then I also had a very strong interest in sustainability in terms of how to manage not only the greenhouse gas footprints of the company, but also elements on the chemical side that go with sustainability.

Shell wanted to combine those two into an energy transition Institute, circular plastics and chemicals were a major focus of that, along with hydrogen as a clean vector for future energy. I was involved with Shell and helped to put together some of their moonshots for how hydrogen can be used in the future economy. The Biden administration has now termed moonshots as Earthshots for the US to be able to use hydrogen as that clean vector to deliver renewable and other forms of energy going forward, as well as carbon management, so I was heavily involved Shell’s planning for how to deal with CO2, whether to capture it and put it underground, or capture it and use it. I'm on the National Academy study team right now, looking at what is the potential to be using some of that CO2 into products as opposed to storing it underground. All of those elements were important and in line with things that I care about and have been heavily involved with, throughout my career. So, why retire when one can be engaged with all of those types of things and now help the next generation come up to speed and take that over and drive it into 2050 and beyond what needs to be done?

EC: How is UH engaging with corporate partners? Why is a collaboration of this nature important?

JP: This collaboration is important for several reasons. One is that we are that bridge to the students and workforce of the future. It's very important for this generation to be as excited about careers and energy as I was, coming up during the energy crisis of the last century and we thought we were absolutely out of energy. We had rationing of gasoline and other things going on, back when I was in high school. Now we have many sources of energy, in a certain sense an energy abundance, but we really need to be looking at the environmental footprint, impact on the climate and then what forms of energy we want to be using. Then you add to that the issue with the impact of plastics on the environment, and how to drive to a more circular economy where we're recycling those and having less of that escape into the environment; those are all strong drivers of what needs to be done going forward.

It takes a lot of energy to process chemicals, plastics, and materials in a circular manner. Developing that workforce of the future means we need the students who want to engage in these efforts and making sure that those opportunities are available across the board to people of all different economic backgrounds in terms of participating in what is going to be just a tremendous growth engine for the future in terms of jobs and opportunities. You're looking at trillions of dollars of annual investment that's needed to manage the energy transition, so it's a really exciting opportunity for those who want to be going into those careers. It's not just science and engineering, but also jobs in law, policy, and communications, because there's a tremendous need for knowledge and background in the energy transition in order to be effective in that going forward. We want to have all the good talent that can be attracted to that arena as a way to address the problem. It's a grand challenge.

We want to make sure that in addition to the research opportunities, since UH is a Tier 1 research institute, we focus on working very closely with industry; there's a number of multinational and local chemical and energy companies that have their research centers and home offices in the Houston area. We can develop those close relationships between the researchers and business interests involved with the students at the university, because we're right here and co-located and can really develop some very strong working teams in that space. It's been exciting to be responding to the federal grant opportunities, which have been abundant in the last year and a half and putting together proposals, to be engaging the industry investigators along with the university students to work on some of those problems. It's a good win-win for both.

We also get to be a trusted voice in the overall equation because there's a lot to know and understand about energy and circular chemicals. They’re more nuanced and complex than what may appear in the news headlines in terms of understanding the trade-offs that have to be worked out, in order to optimize for everyone who's involved. The university can bring in that broad set of stakeholders and have a conversation and make sure that all those co-benefits are understood and the issues that come with energy infrastructure are also worked through for people impacted by the infrastructure but also the benefits of clean air, cleaner environment, and reduced risk of climate change.

EC: Are there any particular technologies the institute is focusing on or excited about at the moment?

JP: I'm really big on hydrogen as an energy vector for the future. Currently, we use hydrogen primarily in refining petroleum into gasoline and diesel and also making fertilizer which is very important for mankind. There was a Nobel Prize on that, you know, more than 100 years ago, and the importance of being able to grow food at rates the planet’s population requires.

Hydrogen now is being looked at, beyond those applications as essentially the diesel or gasoline of the future and also the liquefied natural gas of the future. It can be a clean vector, because you can put it into a fuel cell and generate energy cleanly where water is the only product of that reaction. That can be used to drive quite a number of energy related processes that are currently using combustion of fossil fuels that contain carbon. One of the interesting things is that hydrogen can be supplied to trucks and buses, agricultural tractors, and such. Most of the goods that you're buying today are produced in warehouses where the forklifts are running on hydrogen fuel cells rather than batteries because they refuel so quickly. It's cleaner than emissions. So then there's good air quality in the warehouses. There are more than 60,000 hydrogen-fueled forklifts now in the US, because of that value proposition. We see that for this heavy duty transportation, hydrogen is that very clean vector, you can make it by taking renewable energy and splitting water into hydrogen so it can be very clean. It can also be made from the abundant natural gas we have in Texas and storing the CO2 underground and then using the clean hydrogen for that fuel. That's one of the very exciting new value propositions that go with the Institute.

The second one is carbon management. The Energy Transition Institute will sit within UH Energy, which was founded a number of years ago and so it's looking at the transition part of energy, but UH Energy has its Center for Carbon Management in Energy, which has been focusing capturing and storing CO2 underground off of the existing facilities that we have up and running. They're run by Chuck McConnell but what we will do with ETI is extend that more onto the research side for some of the new things coming along in terms of capturing and utilizing CO2. I'm on a national academy study looking at where and how we want to be turning that CO2 into usable products, using energy and hydrogen, to make a number of those projects. That synergizes with hydrogen as part of the Institute.

Capturing and converting CO2 into usable products is certainly one of the exciting opportunities and then also to reuse those products we've already been making. There are also so many nice things you can do with hydrogen in terms of energy storage, and also helping to upgrade some of the carbon dioxide into usable products, but then also bio feedstock, you can take crop residues or trees and other energy type materials and use hydrogen to upgrade those into those types of plastic materials as well. That's another place where hydrogen is combined with managing a carbon resource to make a more sustainable plastic or polymer.

EC: With UH’s strong emphasis on research and entrepreneurship, is the Institute playing to these strengths within its programming and opportunities to further this trend and if so how?

JP: The money that's been funded by Shell into the launch of the Institute, and then that's been leveraged up to the $52 million point through various donors matching funds. With that, we will be hiring additional faculty to work in this space so that we can further expand the research that's being done. Each new faculty member becomes the opportunity for three things: more coursework in the area around energy, which impacts the student education; the hiring of graduate students who will be doing research; and then that also translates into undergraduate opportunities to be working in the labs and learning. We're also going to be building a new innovation hub in the center of campus here. It will be right across from the MD Anderson library where the old College of Technology building had been located.

On the first floor, there will be a makerspace where the students with ideas and people from the community will be able to come in and have access to 3D printers and other types of materials to put their widgets and prototypes together. On the second floor, then will be the Wolff Center for Entrepreneurship, which has the top undergraduate program in terms of entrepreneurship so they will hold mentorships, present there, in classroom-like settings, getting people involved with launching an idea and taking it forth into the commercial marketplace. The Energy Transition Institute will be on the third floor because so much of that innovation will be involved in the space of energy transition, which is really the main growth engine for expanding research at the university. Then we'll have on the top floor some laboratories, not only on chemistry and materials, but also on data science. And so we have a Data Science Institute, set up by HPE here at UH, looking at for example how artificial intelligence, machine learning and all those kinds of things help you innovate in the energy materials and processes.

Having a hub that combines all of that together really is an attraction to get all those players together on campus and will be really a key to making all this happen. It's a really exciting place to get involved and if you're a student, having all that in front of you, in terms of opportunity, we think it'd be a great attraction.


This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Key takeaways from HETI's Climate Equity Report

The view from heti

The mission of the Houston Energy Transition Initiative (HETI) is to drive sustainable and equitable economic growth for an energy-abundant, low-carbon future in the greater Houston region.

Community engagement will play a key role in ensuring the environmental and economic benefits of the energy transition flow to all members of Greater Houston. This requires a shared understanding of concerns, values, and goals.

“As we make this transition to a lower-carbon energy future, we’re doing it in a way that creates economic opportunity for all Houstonians,” said Jane Stricker, Senior Vice President, Energy Transition and Executive Director of HETI. “When we think about what role community plays in that work, HETI is supported by industry leaders and a community advisory board to ensure that as this work moves forward, it moves forward in a way that benefits everyone.”

HETI recently collaborated with the Houston Advanced Research Center (HARC), Sallie Greenberg Consulting (SGC), energy companies with a presence in the region, and impacted community organization stakeholders and leaders to develop a baseline understanding of current corporate climate action, community needs, and preferred methods of engagement.

“We engaged HARC and SGC to help us to explore the intersection of the energy transition and community engagement,” said Stricker. “They helped us create a collaborative framework to support both companies and communities in advancing solutions for an equitable energy transition. The team has done a truly outstanding job to develop this report and framework.”

The Climate Equity Report, which includes the Framework for an Equitable Energy Transition and the Community Engagement Toolkit for an Equitable Energy Transition, was developed to help foster positive, two-way communication and engagement between Houston-area energy companies and the communities they impact. The Framework and Toolkit are based on in-depth research and interviews — with the aim of bridging the gap between corporate climate action, community engagement, and the federal government’s approach to diversity, equity, inclusion, and accessibility.

“We have the opportunity to reassess how we approach these very important issues,” said John Hall, President and CEO of HARC. “Community members are not just interested in talking and becoming acquainted with the industry — they want to engage in constructive dialogue with the aim of delivering meaningful benefits that will improve the quality of their lives and those of their neighbors.”

“What I see for the first time in the 25 years that I’ve been working in this space is that we have a significant opportunity—right now—to change how we work in communities, how we work with communities, and how we can enter in a partnership to be able to drive equitable energy transition activities forward,” said Dr. Sallie Greenberg, Scientist, Strategic Advisor, and Engagement Specialist at Sallie Greenberg Consulting.

Findings from the Climate Equity Report highlight best practices and strategies to improve relationships, build trust, and address concerns. Ten key findings include:

  • Basic needs
    Helping the community address basic needs and reduce existing risks can reduce barriers to participation and improve community member engagement around the energy transition.
  • Equity considerations
    Equity considerations are growing increasingly important. Communities are looking for authentic processes that include community input on the highest-priority challenges.
  • Two-way engagement
    Successful two-way engagement requires information to flow in both directions. Authentic, targeted community engagement will be a key enabler of climate equity and decarbonization in Houston.
  • Transparency
    As energy companies seek to broaden engagement efforts, transparency is key. Project information must be as transparent and available as possible.
  • Trust flow
    There is a gap between company and community perceptions of engagement largely based on a “trust deficit” that will take time to address.
  • Engagement frequency
    Engagement alone isn’t enough. Consistent, frequent, organic engagement is required to build trust and overcome the “trust deficit” between energy companies and communities.
  • Accountability
    Impacts can be tangible and intangible. Community engagement work must be evaluated using a data-driven approach that measures how engagement activities address inequalities and benefit impacted groups.
  • Shifting priorities
    The type of engagement the community and the federal government wants and expects has changed. Companies must address this change to ensure community needs are acknowledged and met.
  • Stakeholder identification
    Not all stakeholders have the same voice or level of influence. Truly equitable engagement requires the inclusion of marginalized groups, especially those in frontline communities.
  • Program evaluation
    The evaluation process helps companies determine if engagement goals are being met. This includes conducting observations, surveys, and interviews throughout the evaluation process before sharing results with stakeholders and making program improvements based on the collected information.

Read the full report here. Watch the Connect on Climate Equity webinar.


This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

4 Houston energy execs sound off on future workforce, collaboration, and more at OTC


In addition to the massive exhibit floor, networking, and panels, the 2024 Offshore Technology Conference hosts thoughtful fireside chats with energy leaders throughout the ongoing conference taking place in Houston this week.

Four energy leaders from Houston took the stage to discuss what their companies are doing within the energy transition. Take a look at what topics each of the conversations tackled.

Chris Powers, vice president of CCUS at Chevron New Energies, on energy evolution and collaboration

Chris Powers introduced Chevron New Energies, an organization within Chevron that launched in 2021, to the crowd at OTC, describing the entity's focus points as CCUS, hydrogen, offsets and emerging technology, and renewable fuels — specifically things Chevron believes it has the competitive advantage.

One of the things Powers made clear in his fireside chat is that it's not going to be one, two, or even three technologies to significantly move the energy transition along, "it's going to take all the solutions to meet all the growing energy needs," he said.

And, he continued, this current energy transition the world is in isn't exactly new.

"We've been evolving our energy supply since the dawn of man," he said. "Our view is that the world has always been in an energy evolution."

"Hydrocarbons will continue to play a huge role in the years to come, and anyone who has a different view on that I think isn't being pragmatic," he continued.

Chevron has played a role in the clean energy market for decades, Powers said, pointing out Chevron Technology Ventures, which launched in the 1990s.

"No one can do this alone," he said, pointing specifically to the ongoing Bayou Bend joint venture that Chevron is working on with Equinor and TotalEnergies. "We have to bring together the right partners and the right skill sets."

Celine Gerson, group director, Americas, and president at Fugro USA, on the importance of data

Celine Gerson set the scene for Fugro, a geo data and surveying company that diversified its business beginning in 2015 to account for the energy transition. From traditional oil and gas to renewables, "it starts with the geo data," she said during her chat. She said big projects can't map out their construction without it, and then, when it comes to maintaining the equipment, the geo data is equally important.

Another message Gerson wanted to convey is that the skill sets from traditional offshore services translate to renewables. Fugro's employee base has evolved significantly over the past few years, and Gerson said that 50 percent of the workforce was hired over the past five years and 85 percent of the leadership has changed in the past seven.

Agility is what the industry needs, Celine Gerson said, adding that the "industry need to move fast and, in order to move fast, we need to look at things differently.

Attilio Pisoni, CTO of oilfield services and equipment at Baker Hughes, on the future workforce

In addition to the world making changes toward sustainability, the energy industry is seeing a workforce evolution as well, Attilio Pisoni said during his fireside chat, adding that inspiring a workforce is key to retention and encouraging innovation.

"We have a challenge in attracting young people," Pisoni said. "To be successful, you have to have a purpose."

That purpose? Combating climate change. And that, Pisoni said, needs to be able to be quantified. "As a society over all, we need to have a standard of measurement and accuracy in reporting," he said.

To future engineers, Pisoni emphasized the importance of learning outside your specific niche.

"Having seen where the world is now, whatever you study, have a concept and understanding of the system as a whole," he said.

Erik Oswald, vice president of advocacy and policy development at ExxonMobil Low Carbon Solutions, on transferable skills from upstream

When he looks at renewables and new energy, Erik Oswald said he sees a significant similarity for the talent and skill sets required in upstream oil and gas.

"A lot of the same skills are coming into focus" within the energy transition," Oswald said, specifying CCS and upstream.

Even in light of the transferrable workforce, the industry faces needs to grow its workforce in a significant way to keep up with demand — and keeping in mind the younger generations coming onto the scene.

"We're talking about recreating the entire oil and gas industry," Oswald said on preparing the workforce for the future of the energy industry. "We have to do it, it's not an option."

Halliburton introduces new pump technology designed for geothermal

fresh tech

Houston-based Halliburton has introduced a new technology that is designed specifically for geothermal energy applications.

The Summit ESP GeoESP is an advanced submersible borehole and surface pump technology GeoESP lifting pumps, which address challenges related to the transport of fluids to the surface through electric submersible pumps (ESP).

According to a news release from Halliburton, the pump will offer an “efficient, safe, and agile solution that streamlines geothermal operations and enhances overall performance.”

The inlet design minimizes power consumption, protects the pump against solids, and tackles scale formation. GeoESP lifting pumps can withstand extreme conditions with the ability to operate at temperatures up to 220°C (428°F) and can resist scale, corrosion, and abrasion.

GeoESP lifting pumps also use standard pump dimensions customized to suit various geothermal well conditions. With that, Halliburton will also offer a digital approach to geothermal well management with the Intelevat data science-driven platform to empower operators with real-time diagnostics and visualizations of “smart” field data. Halliburton states the system will improve well operations, increase production, extend system run life,reduce energy consumption, and minimize shutdowns.

“With increased global focus on low carbon energy sources, we are using our many decades of geothermal production expertise to help our customers maximize safety and improve efficiency,” Vice President of Artificial Lift Greg Schneider says in the release. “GeoESP lifting pumps build upon our current system to minimize power usage and help push the boundaries of what is possible with more complex well designs.”

Recently, more Houston-based companies have invested in geothermal technologies. GA Drilling and ZeroGeo Energy, a Swiss company specializing in renewable energy, announced a 12-megawatt Hot Dry Rock Geothermal Power Plant (Project THERMO), which is the first of several geothermal power and geothermal energy storage projects in Europe.

Additionally, Fervo Energy is exploring the potential for a geothermal energy system at Naval Air Station Fallon in Nevada. Sage Geosystems is working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas. The Bliss project is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

The Department of Energy announced two major initiatives that will reach the Gulf of Texas and Louisiana in U.S. Secretary of Energy Jennifer M. Granholm's address at CERAWeek by S&P Global in March. The Department of Energy’s latest Pathways to Commercial Liftoff report are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"Geothermal has such enormous potential,” she previously said during her address at CERAWEEK. “If we can capture the 'heat beneath our feet,' it can be the clean, reliable, base-load scalable power for everybody from industries to households."