In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S. Photo via Getty Images

Two Houston companies have received federal funding to develop carbon capture and storage projects.

Evergreen Sequestration Hub LLC, a partnership of Houston-based Trace Carbon Solutions and Jacksonville, Mississippi-based Molpus Woodlands Group, got more than $27.8 million from the U.S. Department of Energy for its Evergreen Sequestration Hub project in Louisiana. DOE says the project is valued at $34.8 million.

The hub will be built on about 20,000 acres of timberland in Louisiana’s Calcasieu and Beauregard parishes for an unidentified customer. It’ll be capable of storing about 250 million metric tons of carbon dioxide.

Trace Carbon Solutions, a subsidiary of Trace Midstream Partners, is developing CCS assets and supporting midstream infrastructure across North America. Molpus, an investment advisory firm, buys, manages, and sells timberland as an investment vehicle for pension funds, college endowments, foundations, insurance companies, and high-net-worth investors.

Another Houston company, RPS Expansion LLC, has received $9 million from the DOE to expand the River Parish Sequestration Project. Following the expansion, the project will be able to store up to 384 million metric tons of carbon dioxide. The CCUS hub is between Baton Rouge and New Orleans.

DOE says the River Parish expansion is valued at $11.8 million.

Also receiving DOE funding is a CCUS project to be developed off the coast of Corpus Christi. The developer is the Southern States Energy Board, based in Peachtree Corners, Georgia.

DOE is chipping in more than $51.1 million for the nearly $64 million hub. It’s estimated that about 35 million metric tons of carbon dioxide emissions are released each year from about 50 industrial and power facilities within a 100-mile radius of Mustang Island. Port Aransas is located on the 18-mile-long island.

In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S.

“The funding … will help ensure that carbon storage projects — crucial to slashing harmful carbon pollution — are designed, built, and operated safely and responsibly across all phases of development to deliver healthier communities as well as high-quality American jobs,” Brad Crabtree, assistant DOE secretary for fossil energy and carbon management, says in a news release.

Students from the University of Houston are celebrating a win at a national competition focused on carbon innovation. Photo via UH.edu

University of Houston team places in prestigious DOE collegiate challenge

top of class

A team of students from the University of Houston have placed in the top three teams for a national competition for the Department of Energy.

The inaugural American-Made Carbon Management Collegiate Competition, hosted by the U.S. Department of Energy's Office of Fossil Energy and Carbon Management, or FECM, tasked the student teams with "proposing regional carbon networks capable of transporting at least one million metric tons of carbon dioxide per year from industrial sources," according to a news release from DOE.

“With this competition, DOE hopes to inspire the next generation of carbon management professionals to develop carbon dioxide transport infrastructure that will help drive technological innovation and emissions reductions, new regional economic development, and high-wage employment for communities across the United States,” Brad Crabtree, assistant secretary of fossil energy and carbon management at DOE, says in the release.

GreenHouston, the University of Houston team mentored by Assistant Professor Jian Shi from the UH Cullen College of Engineering, took third place in the competition, securing a $5,000 cash prize. Sequestration Squad of University of Michigan secured first place and $12,000 and Biggest Little Lithium of the University of Nevada won second and a $8,000 prize.

The UH team's proposal was for an optimized carbon dioxide transportation pipeline for the Houston area. The presentation included cost analysis, revenue potential, safety considerations, weather hazards, and social impact on neighboring communities, according to a release from UH.

“We chose the greater Houston metropolitan area as our target transition area because it is a global hub of the hydrocarbon energy industry,” says Fatemeh Kalantari, team leader, in the release.

“Our team was committed to delivering an optimized and cost-effective carbon dioxide transfer plan in the Houston area, with a focus on safety, environmental justice, and social engagement,” she continues. “Our goal is to ensure the health and safety of the diverse population residing in Houston by mitigating the harmful effects of carbon dioxide emissions from refineries and industries in the area, thus avoiding environmental toxicity.”

With the third place win, GreenHouston will get to present their proposal at DOE’s annual Carbon Management Research Project Review Meeting slated for August.

"We are thrilled to see the exceptional work and dedication displayed by the GreenHouston team in this competition," said Ramanan Krishnamoorti, vice president of energy and innovation at UH. "The team’s innovative proposal exemplifies UH’s commitment to addressing the pressing global issue of carbon management and advancing sustainable practices. We wish the students continued success."

The team included four Cullen College of Engineering doctoral students from the Department of Electrical and Computer Engineering – Kalantari, Massiagbe Diabate, Steven Chen, and Simon Peter Nsah Abongmbo – and one student, Bethel O. Mbakaogu, pursuing his master’s degree in supply chain and logistics technology.

The prize money will go toward funding additional research, refining existing technologies, addressing remaining challenges and raising awareness of CCUS and its project, according to the release, as the team feels a responsibility to continue to work on the GreenHouston project.

“The energy landscape by 2050 will be characterized by reduced greenhouse gas emissions, cleaner air quality, and a more sustainable environment,” Kalantari says. “The transition to green energy will not only mitigate the harmful effects of carbon dioxide on climate change but also create new jobs, promote economic growth, and enhance energy security. This is important, and we want to be part of it.”

The team of students plans to continue to work on the GreenHouston project. Photo courtesy

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil names new partner to bolster US lithium supply chain with offtake agreement

ev supplies en route

Spring-headquartered ExxonMobil Corp. has announced a new MOU for an offtake agreement for up to 100,000 metric tons of lithium carbonate.

The agreement is with LG Chem, which is building its cathode plant in Tennessee and expects it to be the largest of its kind in the country. The project broke ground a year ago and expects an annual production capacity of 60,000 tons. The lithium will be supplied by ExxonMobil.

“America needs secure domestic supply of critical minerals like lithium,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “ExxonMobil is proud to lead the way in establishing domestic lithium production, creating jobs, driving economic growth, and enhancing energy security here in the United States.”

The industry currently has a lithium supply shortage due to the material's use in electric vehicle batteries and the fact that most of production happens overseas.

“Building a lithium supply chain with ExxonMobil, one of the world’s largest energy companies, holds great significance,” Shin Hak-cheol, CEO of LG Chem, adds. “We will continue to strengthen LG Chem’s competitiveness in the global supply chain for critical minerals.”

Per the release, the final investment decision is still pending.

Earlier this year, Exxon entered into another energy transition partnership, teaming up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

Last month, the company announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

3 Houstonians named to prestigious list of climate leaders

who's who

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.