Texas legislators carved out $715 million for nuclear, semiconductor and other economic development projects in the 2025 session. Photo via Getty Images

The Greater Houston Partnership is touting a number of victories during the recently concluded Texas legislative session that will or could benefit the Houston area. They range from millions of dollars for energy projects to billions of dollars for dementia research.

“These wins were only possible through deep collaboration, among our coalition partners, elected officials, business and community leaders, and the engaged members of the Partnership,” according to a partnership blog post. “Together, we’ve demonstrated how a united voice for Houston helps drive results that benefit all Texans.”

In terms of business innovation, legislators carved out $715 million for nuclear, semiconductor, and other economic development projects, and a potential $1 billion pool of tax incentives through 2029 to support research-and-development projects. The partnership said these investments “position Houston and Texas for long-term growth.”

"Nuclear power renaissance"

House Bill 14 (HB 14), for instance, aims to lead a “nuclear power renaissance in the United States,” according to Texas Gov. Greg Abbott’s office. HB 14 establishes the Texas Advanced Nuclear Energy Office, and allocates $350 million for nuclear development and deployment. Two nuclear power plants currently operate in Texas, generating 10 percent of the energy that feeds the Electric Reliability Council Texas (ERCOT) power grid.

“This initiative will also strengthen Texas’ nuclear manufacturing capacity, rebuild a domestic fuel cycle supply chain, and train the future nuclear workforce,” Abbott said in a news release earlier this year.

One of the beneficiaries of Texas’ nuclear push could be Washington, D.C.-based Last Energy, which plans to build 30 micro-nuclear reactors near Abilene to serve power-gobbling data centers across the state. Houston-based Pelican Energy Partners also might be able to take advantage of the legislation after raising a $450 million fund to invest in companies that supply nuclear energy services and equipment.

Reed Clay, president of the Texas Nuclear Alliance, called this legislation “the most important nuclear development program of any state.”

“It is a giant leap forward for Texas and the United States, whose nuclear program was all but dead for decades,” said Clay. “With the passage of HB 14 and associated legislation, Texas is now positioned to lead a nuclear renaissance that is rightly seen as imperative for the energy security and national security of the United States.”

Infrastructure

In the infrastructure arena, state lawmakers:

  • Approved $265 million for Houston-area water and flood mitigation projects, including $100 million for the Lynchburg Pump Station.
  • Created the Lake Houston Dredging and Maintenance District.
  • Established a fund for the Gulf Coast Protection District to supply $550 million for projects to make the coastline and ship channel more resilient.

Dementia institute

One of the biggest legislative wins cited by the Greater Houston Partnership was passage of legislation sponsored by Sen. Joan Huffman, a Houston Republican, to provide $3 billion in funding over 10 years for the Dementia Prevention and Research Institute of Texas. Voters will be asked in November to vote on a ballot initiative that would set aside $3 billion for the new institute.

The dementia institute would be structured much like the Cancer Prevention and Research Institute of Texas (CPRIT), a state agency that provides funding for cancer research in the Lone Star State. Since its founding in 2008, CPRIT has awarded nearly $3.9 billion in research grants.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our healthcare community. Now, it’s up to voters to ensure this initiative moves forward.”

More than 500,000 Texans suffer from some form of dementia, including Alzheimer’s disease, according to Lt. Gov. Dan Patrick.

“With a steadfast commitment, Texas has the potential to become a world leader in combating [dementia] through the search for effective treatments and, ultimately, a cure,” Patrick said.

Funding for education

In the K-12 sector, lawmakers earmarked an extra $195 million for Houston ISD, $126.7 million for Cypress-Fairbanks ISD, $103.1 million for Katy ISD, $80.6 million for Fort Bend ISD, and $61 million for Aldine ISD, the partnership said.

In higher education, legislators allocated:

  • $1.17 billion for the University of Houston College of Medicine, University of Texas Health Science Center at Houston, UT MD Anderson Cancer Center, and Baylor College of Medicine.
  • $922 million for the University of Houston System.
  • $167 million for Texas Southern University.
  • $10 million for the Center for Biotechnology at San Jacinto College.
Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

Rice University semiconductor researchers join DARPA-funded Texas team

innovation station

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Fervo Energy spotlighted by Bill Gates as geothermal’s global growth driver

geothermal predictions

In a new blog post spotlighting Houston-based geothermal power startup Fervo Energy, billionaire Bill Gates — a Fervo investor — predicts geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Today, geothermal accounts for less than 1 percent of electricity generated around the world, according to the International Energy Agency. The agency forecasts geothermal will represent up to 15 percent of global power by 2050.

“Geothermal power will have a big role to play in our clean energy future, and it’s exciting to see companies like Fervo push the technology to new depths,” Gates wrote.

Gates’ more than $1 billion Breakthrough Energy Ventures fund has contributed to the $982 million pool of money that Fervo has raised since its founding in 2017. Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. Its valuation has been estimated at $1.4 billion.

The Microsoft billionaire published the blog post on his Gates Notes website after touring the site of Fervo’s Cape Station geothermal project, which is under construction in Utah. Fervo says Cape Station will be the world’s largest geothermal plant, capable of someday producing up to 2 gigawatts of power.

Earlier this year, Fervo raised $206 million to put toward the development of Cape Station. Of that amount, $100 million came from Breakthrough Energy Catalyst, a green tech investment program backed by Gates, according to Inc.com.

The first phase of Cape Station is scheduled to be completed in 2026, with first-year power generation pegged at 100 megawatts. An additional 500 megawatts of power-producing capacity is slated to go online in 2028.

“Geothermal is one of the most promising ways to deliver clean energy that’s reliable and affordable,” Gates wrote.

In the blog post, Gates praised the simplicity of geothermal energy.

“The interior of the Earth is incredibly hot, and the deeper you go, the hotter the ground becomes,” he explained. “If you pump fluid deep enough to be warmed by this heat and then pump it back to the surface, you can turn the hot liquid into steam and use it to spin turbines and generate electricity — just like many other types of power plants.”

Gates noted that horizontal drilling is one of Fervo’s biggest innovations. The company extends its wells horizontally by as much as 5,000 feet at the deepest point. It couples horizontal drilling with hydraulic fracturing, or fracking, to extract geothermal energy from rock formations.

Most wells at Cape Station are 8,000 to 9,000 feet deep, and the deepest one is 15,000 feet below the surface, Gates pointed out.

Gates also emphasized the water-conserving, closed-system setup at Cape Station.

“Geothermal energy is one of the more climate-friendly sources of power, but one of its downsides is how much water it uses. … Fervo’s technology captures all the water that would’ve been lost and recirculates it underground to keep the system running,” he wrote.

Cemvita expands in Brazil with acquisition, new leader

going global

Houston industrial biotech company Cemvita has announced two strategic moves to advance its operations in Brazil.

The company, which utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals, acquired a complementary technology that expands its IP and execution of scale-up capacity, according to a news release. The acquisition will bring additional synthetic biology toolsets that Cemvita believes will assist with compressing and commercializing timelines.

The company also appointed Luciano Zamberlan as vice president of operations based in Brazil.

Zamberlan will lead operational execution, site readiness and early commissioning activities in Brazil. He brings more than 20 years of experience in biotechnology to the role. He recently served as director of engineering at Raízen, Brazil’s largest ethanol producer and the world’s largest producer of sugarcane ethanol. At Raízen, he coordinated the implementation of four greenfield plants and oversaw operational teams and process optimization for second-generation ethanol (E2G) and biogas.

“I am very pleased to join Cemvita, a company at the forefront of transforming waste into valuable, sustainable resources,” Zamberlan said in the release. “My expertise in scaling-up innovation, coupled with my experience in structuring and commissioning greenfield industrial operations, is perfectly aligned with Cemvita's mission and I'm eager to bring my energy and drive to accelerate Cemvita's industrial performance and contribute for a circular future.”

Cemvita expanded to Brazil in January to help capitalize on the country’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, enacted in 2024. The law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

“These steps enable us to augment Brazil’s longstanding bioindustrial ecosystem with next-generation capabilities, reducing early commercialization risk and expanding optionality for future product platforms,” Marcio Silva, CTO of Cemvita, said in the news release. “Together, they strengthen our ability to move from proof-of-concept to industrial reality.”