research findings

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

Trending News

A View From HETI

Rice Wind Energy had a strong showing at the DOE's 2025 Collegiate Wind Competition. Photo courtesy Rice University.

The student-led Rice Wind Energy team clinched second place overall at the U.S. Department of Energy’s 2025 Collegiate Wind Competition (CWC), which challenges students nationwide to design and build wind turbines, develop wind energy projects and engage in public outreach to promote renewable energy.

“The Collegiate Wind Competition is such an incredible opportunity for students passionate about sustainability to gain industry-applicable, hands-on experience in the renewable energy space,” senior and team vice president Jason Yang said in a news release.

The event was hosted by the National Renewable Energy Laboratories at the University of Colorado Boulder campus. Over 40 teams entered the competition, with just 12 advancing to the final stage. The competition comprises four core contests: connection creation, turbine design, turbine testing and project development.

Rice Wind Energy had the largest team with 26 students advancing to the final stage of the competition. It picked up a first-place win in the connection creation contest, and also placed third in the project development, fourth in turbine testing and fifth in turbine design contests.

“This accomplishment is a testament to our focus, teamwork and unwavering determination,” senior Esther Fahel, Rice Wind Energy’s 2024-25 president, said in a news release. “It’s a remarkable experience to have watched this team progress from its inception to the competition podium. The passion and drive of Rice students is so palpable.”

In the Connection Creation contest, the team hosted a wind energy panel with Texas Tech University, invited local high school students to campus for educational activities, produced a series of Instagram reels to address wind energy misconceptions and launched its first website.

The team also developed an autonomous wind turbine and floating foundation design that successfully produced over 20 watts of power in the wind tunnel. They were also one of just a few teams to complete the rigorous safety test, which brought their turbine to below 10 percent of its operational speed within 10 seconds of pressing an emergency stop button. It also designed a 450-megawatt floating wind farm located 38 kilometers off the coast of Oregon by using a multi-decision criteria matrix to select the optimal site, and conducted technical modeling.

“I am amazed at the team’s growth in impact and collaboration over the past year,” senior Ava Garrelts, the team’s Connection Creation lead for 2024-25, said in a news release. “It has been incredible to see our members develop their confidence by building tangible skills and lifelong connections. We are all honored to receive recognition for our work, but the entire experience has been just as rewarding.”

Rice faculty and industry sponsors included David Trevas and faculty advisers Gary Woods and Jose Moreto, Knape Associates, Hartzell Air Movement, NextEra Analytics, RWE Clean Energy, H&H Business Development and GE Vernova, Rice’s Oshman Engineering Design Kitchen, George R. Brown School of Engineering and Computing, Rice Engineering Alumni and Rice Center for Engineering Leadership.

The BYU Wind Energy Team took home the overall first-place prize. A team from the University of Texas at Dallas was the only other Texas-based team to make the 12-team finals.

Trending News