research findings

Houston scientists create first profile of Mars’ radiant energy budget, revealing climate insights on Earth

A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

Trending News

A View From HETI

Houston-based Solidec took home the top TEX-E price and $25,000 at last year's Energy Venture Day and Pitch Competition. Photo courtesy of HETI

The Rice Alliance for Technology and Entrepreneurship, the Houston Energy Transition Initiative and the Texas Entrepreneurship Exchange for Energy announced the 30-plus energy ventures and five student teams that will pitch at the 2025 Energy Venture Day and Pitch Competition during CERAWeek next month.

The ventures are focused on driving efficiency and advancements toward the energy transition and will each present a 3.5-minute pitch before a network of investors and industry partners during CERAWeek's Agora program.

The pitch competition is divided up into the TEX-E university track, in which Texas student-led energy startups compete for $50,000 in cash prizes, and the industry ventures track.

Teams competing in the TEX-E Prize track include:

  • ECHO
  • HEXAspec
  • HydroStor Analytics
  • Nanoborne
  • Pattern Materials

The industry track is subdivided into three additional tracks, spanning materials to clean energy and will feature 36 companies. The top three companies from each industry track will be named. The winner of the CERAWeek competition will also have the chance to advance and compete for the $1 million investment prize at the Startup World Cup in October 2025.

Teams come from around the world, including several notable Houston-based ventures, such as Corrolytics, Rheom Materials, AtmoSpark Technologies, and others. Click here to see the full list of companies and investor groups that will participate.

The pitch competition will be held Wednesday, March 12, at CERAWeek from 1-4:30 pm. An Agora pass is required to attend.

Those without passes can catch more than 50 companies at a free pitch preview at the Ion. Pitches will be followed by private meetings with venture capitalists, corporate innovation groups, industry leaders, and tech scouts. The preview will be held Tuesday, March 11, from 9:30 am to 2:30 pm at the Ion. It's free to attend, but registration is required. Click here to register.

Last year, Houston-based Solidec took home the top TEX-E price and $25,000 cash awards. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions. Its co-founder and Rice University professor Haotian Wang was recently awarded the 2025 Norman Hackerman Award in Chemical Research.

Trending News