A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

Now is the time for your tech company to become a climate company, says this Houston expert. Photo via Getty Images

Houston energy startup CEO calls for tech players to join the climate fight

guest column

In 2022, over 100,000 workers were laid off from major technology companies in an economic slowdown, leaving many people wondering what the future holds. There’s a bright spot, however. These closed doors create an opening for individuals to begin a new career in climate tech, especially as these former tech employees possess skills needed to find and develop novel ways to innovate.

The story of a techie turning to climate isn’t new by any means. For example, Alex Roetter was the former head of engineering at Twitter but later pivoted to climate tech, becoming a managing director and general partner of Moxxie Ventures and the founder of Terraset, a nonprofit focused on funding high-quality carbon removal. Raj Kapoor followed a similar path as he now serves as the co-founder and managing partner of Climactic, a venture capital firm solving climate-related issues using technology, after working as Lyft’s chief strategy officer.

What’s unique now is that the climate tech industry is ready for it – public and private companies have made climate pledges that need industry-disrupting tech solutions, and there is federal, state, and private funding that are backing these solutions up.

When I started out in the energy industry nearly a dozen years ago, there was no such thing as a career in climate tech. Shortly after the 2008 financial crisis, I found a job at a firm backed by smart investors who saw through the noise and realized renewable energy investments are some of the most stable and predictable ways to earn financial returns. Now that Wall Street recognizes investments in climate-related industries as the best way to achieve their long term financial obligations, we’ve seen nearly every company realize they don’t have an economic future unless they also focus on climate results.

We used to say, “every company will become a tech company.” We’re now moving towards a world where “every company is a climate company.” And that is creating opportunities throughout the economy for people to contribute their skills and support their families while building something that actually matters.

Why climate tech is a safe bet

Taking a career twist into climate tech is a safe bet for a few reasons. The first is, unfortunately and obviously, the fact that climate change is getting worse. Between extreme weather events becoming more frequent around the world and the past eight years becoming the hottest on record, there is a huge need for climate mitigation solutions in every sector. What’s more, with the Earth’s population hitting eight billion, we will need to scale technology that addresses challenges like grid instability and food security, as governments try to balance resources. In fact, the Biden-Harris Administration announced $13B of programs to expand the U.S.’s power grid.

To tackle climate change, federal, state, and private sector capital investment in climate tech is at an all time high. As leaders pledge to reach net zero by 2050, investments and commitments to accelerate solutions to decarbonize the planet and make it more sustainable are being prioritized. Last year, there was a whopping $26.8 billion poured into climate tech. In five years, the climate tech market is estimated to near $1.4 trillion and with new energy plans in the Inflation Reduction Act announced earlier this year, investors are heavily influenced in funding the climate tech space.

An easier career shift

A switch to climate tech can be daunting, but it’s not just hard sciences like chemistry and materials engineering. It’s software engineers, social media savvants, and sales specialists. We have employees who have worked at places such as Google and Square come and support us with building our backend tech stack and consumer app. One of our tech leaders is a famous author, having written several books about coding in Django.

We’ve also recently heard about the “great resignation” over the past couple of years, but I think that framing is wrong. I think it's a “great reconsideration”. The reality is, for most of us on a given day, we spend more of our waking hours at work than any other activity. People need purpose — lack of purpose is the biggest reason for burnout. In fact not only have we not been impacted by the “great resignation” that many other firms have been, but we’ve actually received over tens of thousands of applications for our open roles in the past year alone. The career pivot to something meaningful is happening, and it’s happening today.

For example, one of our data engineers graduated from MIT and used to work in Houston as a chemical engineer — after some reskilling, she’s now a data engineer for our Kraken Technologies platform. Another one of our colleagues worked in the traditional marketing space and has transitioned over to climate tech to lead our global marketing. The climate industry needs as many out-of-the-box people as possible to draw new perspectives for reaching climate goals and getting us closer to a clean future.

Not sure where to start? There are several resources dedicated to onboarding people into the climate tech world. Some of my favorite are:

  • Climatebase: this platform is essentially a LinkedIn for climate tech — people can discover climate jobs and learn how they can transition to the space.
  • Climate Change Careers: founded in 2020, this site features job postings, educational opportunities, and information about switching to a climate-focused career.
  • Climate Draft: a member supported coalition comprising climate tech startups and venture capitalists who aim to bring more top talent, investment and commercial opportunities to the table.
  • ClimatEU: a leading resource for climate jobs and employers in Europe consisting of job postings, and opportunities for companies to find additional investment opportunities.
  • Climate People: a platform dedicated to mobilizing a workforce transition towards climate careers.

My inbox is also always open to people interested in joining the energy end of the world — whether it’s to talk about different openings at Octopus Energy, discuss how your expertise transfers to climate tech, or just to say hello.

------

Michael Lee is the CEO of London-headquartered Octopus Energy. He is based in the company's US headquarters in Houston. This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Eclipse Energy lands Weatherford investment to scale clean hydrogen tech

clean energy collab

Oil and gas giant Weatherford International (NASDAQ: WFRD) has made a capital investment for an undisclosed amount in Eclipse Energy as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as January 2026. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources.

“We strongly believe the subsurface is the most overlooked climate asset,” Prabhdeep Singh Sekhon, CEO of Eclipse Energy, said in the release. “This partnership demonstrates how traditional oilfield expertise and frontier biotechnology can come together to transform the energy transition. Weatherford’s global reach and deep technical knowledge will accelerate our ability to scale our low-carbon technology rapidly and cost-effectively.”

Eclipse Energy, previously known as Gold H2, completed its first field trial this summer, demonstrating subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, and it could also extend "beyond hydrogen, laying the foundation for the next generation of subsurface clean energy fuels."

Last month, Eclipse Energy won in the Energy Transition Business category at the 2025 Houston Innovation Awards. The company closed an $8 million series A this year and has plans to raise another round in 2026.

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

ERCOT approves $9.4B project to improve grid, meet data center demand

power project

The Electric Reliability Council of Texas, which manages the electric grid for 90 percent of Texans, is undertaking a $9.4 billion project to improve the reliability and efficiency of statewide power distribution. The initiative comes as ERCOT copes with escalating demand for electricity from data centers and cryptocurrency-mining facilities.

The project, approved Dec. 9 by ERCOT’s board, will involve building a 1,109-mile “super highway” of new 765-kilovolt transmission lines. One kilovolt equals 1,000 volts of electricity.

According to the Hoodline Dallas news site, the $9.4 billion project represents the five- to six-year first phase of ERCOT’s Strategic Transmission Expansion Plan (STEP). Hoodline says the plan, whose price tag is nearly $33 billion, calls for 2,468 miles of new 765-kilovolt power lines.

STEP will enable ERCOT to “move power longer distances with fewer losses,” Hoodline reports.

Upgrading the ERCOT grid is a key priority amid continued population growth in Texas, along with the state’s explosion of new data centers and cryptocurrency-mining facilities.

ERCOT says about 11,000 megawatts of new power generation capacity have been added to the ERCOT grid since last winter.

But in a report released ahead of the December board meeting, ERCOT says it received 225 requests this year from large power users to connect to its grid — a 270 percent uptick in the number of megawatts being sought by mega-users since last December. Nearly three-fourths (73 percent) of the requests came from data centers.

Allan Schurr, chief commercial officer of Houston-based Enchanted Rock, a provider of products and services for microgrids and onsite power generation, tells Energy Capital that the quickly expanding data center industry is putting “unprecedented pressure” on ERCOT’s grid.

“While the state has added new generation and transmission capacity, lengthy interconnection timelines and grid-planning limitations mean that supply and transmission are not keeping pace with this rapid expansion,” Schurr says. “This impacts both reliability and affordability.”

For families in Texas, this could result in higher energy bills, he says. Meanwhile, critical facilities like hospitals and grocery stores face a heightened challenge of preventing power outages during extreme weather or at other times when the ERCOT grid is taxed.

“I expect this trend to continue as AI and high-density computing grow, driving higher peak demand and greater grid variability — made even more complex by more renewables, extreme weather and other large energy users, like manufacturers,” Schurr says.

According to the Pew Research Center, data centers accounted for 4 percent of U.S. electricity use in 2024, and power demand from data centers is expected to more than double by 2030. Data centers that support the AI boom make up much of the rising demand.

In September, RBN Energy reported more than 10 massive data-center campuses had been announced in Texas, with dozens more planned. The Lone Star State is already home to roughly 400 data centers.

“Texas easily ranks among the nation’s top states for existing data centers, with only Virginia edging it out in both data-center count and associated power demand,” says RBN Energy.