guest column

Houston energy startup CEO calls for tech players to join the climate fight

Now is the time for your tech company to become a climate company, says this Houston expert. Photo via Getty Images

In 2022, over 100,000 workers were laid off from major technology companies in an economic slowdown, leaving many people wondering what the future holds. There’s a bright spot, however. These closed doors create an opening for individuals to begin a new career in climate tech, especially as these former tech employees possess skills needed to find and develop novel ways to innovate.

The story of a techie turning to climate isn’t new by any means. For example, Alex Roetter was the former head of engineering at Twitter but later pivoted to climate tech, becoming a managing director and general partner of Moxxie Ventures and the founder of Terraset, a nonprofit focused on funding high-quality carbon removal. Raj Kapoor followed a similar path as he now serves as the co-founder and managing partner of Climactic, a venture capital firm solving climate-related issues using technology, after working as Lyft’s chief strategy officer.

What’s unique now is that the climate tech industry is ready for it – public and private companies have made climate pledges that need industry-disrupting tech solutions, and there is federal, state, and private funding that are backing these solutions up.

When I started out in the energy industry nearly a dozen years ago, there was no such thing as a career in climate tech. Shortly after the 2008 financial crisis, I found a job at a firm backed by smart investors who saw through the noise and realized renewable energy investments are some of the most stable and predictable ways to earn financial returns. Now that Wall Street recognizes investments in climate-related industries as the best way to achieve their long term financial obligations, we’ve seen nearly every company realize they don’t have an economic future unless they also focus on climate results.

We used to say, “every company will become a tech company.” We’re now moving towards a world where “every company is a climate company.” And that is creating opportunities throughout the economy for people to contribute their skills and support their families while building something that actually matters.

Why climate tech is a safe bet

Taking a career twist into climate tech is a safe bet for a few reasons. The first is, unfortunately and obviously, the fact that climate change is getting worse. Between extreme weather events becoming more frequent around the world and the past eight years becoming the hottest on record, there is a huge need for climate mitigation solutions in every sector. What’s more, with the Earth’s population hitting eight billion, we will need to scale technology that addresses challenges like grid instability and food security, as governments try to balance resources. In fact, the Biden-Harris Administration announced $13B of programs to expand the U.S.’s power grid.

To tackle climate change, federal, state, and private sector capital investment in climate tech is at an all time high. As leaders pledge to reach net zero by 2050, investments and commitments to accelerate solutions to decarbonize the planet and make it more sustainable are being prioritized. Last year, there was a whopping $26.8 billion poured into climate tech. In five years, the climate tech market is estimated to near $1.4 trillion and with new energy plans in the Inflation Reduction Act announced earlier this year, investors are heavily influenced in funding the climate tech space.

An easier career shift

A switch to climate tech can be daunting, but it’s not just hard sciences like chemistry and materials engineering. It’s software engineers, social media savvants, and sales specialists. We have employees who have worked at places such as Google and Square come and support us with building our backend tech stack and consumer app. One of our tech leaders is a famous author, having written several books about coding in Django.

We’ve also recently heard about the “great resignation” over the past couple of years, but I think that framing is wrong. I think it's a “great reconsideration”. The reality is, for most of us on a given day, we spend more of our waking hours at work than any other activity. People need purpose — lack of purpose is the biggest reason for burnout. In fact not only have we not been impacted by the “great resignation” that many other firms have been, but we’ve actually received over tens of thousands of applications for our open roles in the past year alone. The career pivot to something meaningful is happening, and it’s happening today.

For example, one of our data engineers graduated from MIT and used to work in Houston as a chemical engineer — after some reskilling, she’s now a data engineer for our Kraken Technologies platform. Another one of our colleagues worked in the traditional marketing space and has transitioned over to climate tech to lead our global marketing. The climate industry needs as many out-of-the-box people as possible to draw new perspectives for reaching climate goals and getting us closer to a clean future.

Not sure where to start? There are several resources dedicated to onboarding people into the climate tech world. Some of my favorite are:

  • Climatebase: this platform is essentially a LinkedIn for climate tech — people can discover climate jobs and learn how they can transition to the space.
  • Climate Change Careers: founded in 2020, this site features job postings, educational opportunities, and information about switching to a climate-focused career.
  • Climate Draft: a member supported coalition comprising climate tech startups and venture capitalists who aim to bring more top talent, investment and commercial opportunities to the table.
  • ClimatEU: a leading resource for climate jobs and employers in Europe consisting of job postings, and opportunities for companies to find additional investment opportunities.
  • Climate People: a platform dedicated to mobilizing a workforce transition towards climate careers.

My inbox is also always open to people interested in joining the energy end of the world — whether it’s to talk about different openings at Octopus Energy, discuss how your expertise transfers to climate tech, or just to say hello.

------

Michael Lee is the CEO of London-headquartered Octopus Energy. He is based in the company's US headquarters in Houston. This article originally ran on InnovationMap.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News