Texas continues to lead the nation in clean energy adoption and grid modernization. Photo by Moritz Lange on Unsplash

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

To remain the world leader in energy, Houston must ensure that every household has access to affordable and dependable power. Photo via Getty Images

Energy expert on Houston's advantage: Building affordability and reliability for all

Guest Column

As the energy capital of the world, Houston has been at the forefront of innovation, powering industries and communities for generations. Many Houston families, however, are facing a reality that undermines our leadership: high energy bills and ongoing concerns about grid reliability.

Affordability and reliability are not just technical issues; they’re equity issues. To remain the world leader in energy, we must ensure that every household has access to affordable and dependable power.

Affordability: The First Step Toward Equity

According to the recent 2025 study by The Texas Energy Poverty Research Institute, nearly 80% of low- to moderate-income Houstonians scaled back on basic needs to cover electric bills. Rising costs mean some Houstonians are forced to choose between paying their utility bill or paying for groceries.

Additionally, Houston now has the highest poverty rate among America’s most populous cities. Energy should not be a privilege for only half of our city’s population. That’s why affordability needs to be at the center of Houston’s energy conversation.

Several practical solutions exist to help address this inequity:

  • We can increase transparency in electricity pricing and help families better understand their electricity facts labels to make smarter choices.
  • We can expand energy efficiency programs, like weatherizing homes and apartments, swapping out old light bulbs for LEDs, and adopting smart thermostats.
  • Incentives to help families invest in these changes can deliver long-term benefits for both them and apartment complex owners.

Many small changes, when combined, can add up to significant savings for families while reducing overall demand on the grid.

Reliability: A Shared Community Priority

The memories of Hurricane Beryl, Derecho, and Winter Storm Uri are still fresh in the minds of Texans. We saw firsthand the fragility of our grid and how devastating outages are to families, especially those without resources to handle extreme weather. Reliability of the grid is an issue of public health, economic stability, and community safety.

Houston has an opportunity to lead by embracing innovation. Grid modernization, from deploying microgrids to expanding battery storage, can provide stability when the system is under stress. Partnerships between utilities, businesses, and community organizations are key to building resilience. With Houston’s innovation ecosystem, we can pilot solutions here that other regions will look to replicate.

Energy Equity in Action

Reliable, affordable energy strengthens equity in tangible ways. When households spend less on utilities, they have more to invest in their children’s education or save for the future. When power is stable, schools remain open, businesses continue to operate, and communities thrive. Extending energy efficiency programs across all neighborhoods creates a fairer, more balanced system, breaking down inequities tied to income and geography.

Studies show that expanding urban green spaces such as community gardens and tree-planting programs can lower neighborhood temperatures, reduce energy use for cooling, and improve air quality in disadvantaged areas, directly reducing household utility burdens.

In Houston, for example, the median energy burden for low-income households is 7.1% of income, more than twice that of the general population, with over 20% of households having energy burdens above 6%.

Research also demonstrates that community solar programs and urban cooling investments deliver clean, affordable power, helping to mitigate heat stress and making them high-impact strategies for energy equity and climate resilience in vulnerable neighborhoods.

Public-Private Partnerships Make the Difference

The solutions to affordability and reliability challenges must come from cross-sector collaboration. For example, CenterPoint Energy offers incentives through its Residential and Hard-to-Reach Programs, which support contractors and community agencies in delivering energy efficiency upgrades, including weatherization, to low-income households in the greater Houston area.

Nonprofits like the Houston Advanced Research Center (HARC) received a $1.9 million Department of Energy grant to lead a weatherization program tailored for underserved communities in Harris County, helping to lower bills and improve housing safety

Meanwhile, the City of Houston’s Green Office Challenge and Better Buildings Initiative bring private-sector sponsors, nonprofits, and city leadership together to drive energy reductions across millions of square feet of commercial buildings, backed by training and financial incentives. Together, these partnerships can result in real impact that brings more equity and access to affordable energy.

BKV Energy is committed to being part of the solution by promoting practical, consumer-focused strategies that help families save money and use energy more efficiently. We offer a suite of programs designed to provide customers with financial benefits and alleviate the burden of rising electricity bills. Programs like BKV Energy’s demonstrate how utilities can ease financial strain for families while building stronger customer loyalty and trust. Expanding similar initiatives across Houston would not only lower household energy burdens but also set a new standard for how energy companies can invest directly in their communities.

By proactively addressing affordability, energy companies can help ensure that rising costs don’t disproportionately impact vulnerable households. These efforts also contribute to a more resilient and equitable energy future for Houston, where all residents can access reliable power without sacrificing financial stability.

Houston as a Blueprint

Houston has always been a city of leadership and innovation, whether pioneering the space race, driving advancements in medical research at the Texas Medical Center, or anchoring the global energy industry. Today, our challenge is just as urgent: affordability and reliability must become the cornerstones of our energy future. Houston has the expertise and the collaborative spirit to show how it can be done.

By scaling innovative solutions, Houston can make energy more equitable, strengthening our own community while setting a blueprint for the nation. As the energy capital of the world, it is both our responsibility and our opportunity to lead the way to a more equitable future for all.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

The Energy Education Foundation will offer EnergyXP to middle schoolers this fall. Photo courtesy Energy Education Foundation.

Expert: How technology is transforming energy education and powering young minds

Guest Column

In today’s ever-changing digital world, the way we teach kids about science is rapidly transforming. Energy education, specifically, is expanding and contributing to the STEM landscape significantly. Helping children understand where energy comes from, how we use it in our everyday lives and how it affects our planet is critical to sparking early interest in STEM learning and inspiring potential careers in the energy industry.

Thanks to new technology and the power of artificial intelligence, we are better equipped to explain these complex ideas in fun, interactive and easy-to-understand ways.

The Role of Educational Technology in Classrooms

Traditional teaching methods can struggle to connect scientific concepts to students’ everyday experiences. A 2023 study found that technology not only makes learning more engaging and enjoyable but also encourages students to invest more effort in their studies over time.

Tools like tablets, smartboards, interactive simulations and gamified learning apps allow students to visualize energy systems, conduct virtual experiments and explore dynamic models that demonstrate how energy flows through different systems.

For example, virtual labs allow students to simulate the installation of solar panels or observe how wind turbines convert kinetic energy into electricity, all without leaving the classroom. These digital tools transform abstract theories into concrete, hands-on experiences, making it easier for students to understand and retain core principles of energy science.

Gamified learning has also become increasingly popular in K–12 classrooms because it engages students by meeting them where they are through interactive, game-like experiences. By incorporating familiar motivators such as points, levels, rewards and challenges, it taps into the same engagement techniques students encounter in video games and apps outside the classroom.

In an era when competition for students’ attention is higher than ever, more educators are turning to gamification because it works; it transforms passive learning into an active, student-centered experience, helping learners stay focused and motivated.

When applied to energy education, gamification can be especially powerful. Educational games that task students with managing a virtual city, designing energy-efficient systems or balancing an energy budget help build valuable real-world skills like problem-solving and systems thinking. Most importantly, they keep students engaged and make learning about energy meaningful.

Equity and Access in Educational Technology

While technology and AI offer immense potential to transform energy education, it is crucial to address the digital divide that exists across different schools and communities. Not all students have equal access to the devices, software or reliable internet connectivity needed to benefit from these innovative learning tools.

Bridging this gap requires collaborative efforts through public-private partnerships, targeted grants and community-driven educational outreach programs. These initiatives play a vital role in ensuring that every student, regardless of socioeconomic background or geographic location, has the opportunity to engage with tech-driven energy education.

Organizations like the Energy Education Foundation are taking meaningful steps in this direction. This fall, the nonprofit is launching EnergyXP, an innovative, mobile STEM learning experience designed for middle school students. The program offers 16 interactive, hands-on, and digital activities aligned with the Next Generation Science Standards, and is provided free of charge to participating schools. Through EnergyXP, students explore diverse energy concepts while building curiosity, collaboration and critical thinking skills. The program links classroom learning to real-world applications, helping students see the role of energy in their daily lives and sparking interest in STEM careers.

Other promising initiatives such as community tech hubs, low connectivity learning platforms, school-device loan programs and subsidized broadband options also support increased access to digital education. In Harris County, the Commissioners Court recently voted unanimously to create the Harris County Broadband Task Force with the aim of expanding internet access and affordability and addressing the growing digital literacy demands in the region. Additionally, Compudopt, a partner of the Energy Education Foundation, is another valuable resource for the Houston-area community. Its programs work to eliminate barriers to computer access, build technical and digital literacy skills, offer no- or low-cost high-speed internet options and support the long-term success of youth and their communities.

By supporting programs and organizations that decrease the digital divide, we can ensure that all students have access to engaging, technology-driven energy education. Providing young learners with the tools to explore, innovate and connect with the energy systems that power their world is key to building a more diverse, inclusive energy workforce for the future.

AI is Transforming the Energy Landscape

Students who utilize technology and AI in the classroom will be better equipped for the energy jobs of the future. As the energy sector continues to evolve, AI is becoming an essential tool for addressing complex challenges from optimizing energy production and distribution to accelerating innovation and improving system reliability.

By exposing students to AI-driven learning experiences early on, we can help them build the skills needed to understand and contribute to emerging technologies such as smart grids, predictive maintenance, renewable energy forecasting and energy storage optimization. These technologies are already shaping the future of how we produce, store and consume energy.

Through hands-on engagement with AI-powered simulations, data analysis tools and problem-solving scenarios, students are learning how to lead in a tech-driven, sustainable energy future.

As the world transitions toward more technology-driven energy systems, the importance of early, engaging and equitable energy education has never been more critical. Through the integration of technology, gamified learning and AI in the classroom, we can make science more accessible and empower students with the knowledge and skills they need to shape the future. Programs like EnergyXP demonstrate how innovation in education can bridge opportunity gaps, spark curiosity and lay the groundwork for a more inclusive and forward-thinking energy workforce. The investments we make in today’s classrooms will determine the energy leaders of tomorrow.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


The end of the solar tax credit is not the end of the solar industry. Photo by Kindel Media/Pexels

Texas still has its best solar days ahead of it, even as federal tax credit sunsets

Guest Column

If you follow energy policy, you already know that Congress repealed the 30% residential solar tax credit. This poses a significant challenge for continued growth in the market. It also provides an opportunity for the industry to grow in a smart, consumer-friendly way. That’s why in Texas, the story is what happens next: The state and the market are continuing to make going solar much simpler, better, and cheaper.

Policies are moving in the right direction. For example, starting this month, a bipartisan permitting reform takes effect that will cut red tape for home solar and batteries. It lets licensed third-party professionals review plans and perform inspections, requires agencies to post standardized rules and fees online, and allows homeowners to start work once those third-party approvals are submitted. It also shifts negligence liability to the third-party reviewer, thereby reducing municipal risk while accelerating safe, code-compliant installs. In plain English: fewer bottlenecks, faster installs, and lower “soft costs.”

As a result, Houston is already piloting the National Renewable Energy Lab’s free SolarAPP+ to auto-approve standard solar designs, which cuts roughly 12 days from typical timelines. Independent analyses estimate that these automated permitting rules could trim rooftop solar costs by thousands. In other words, even small, costless policy changes like this can save you almost as much money as the huge solar tax credit did, and these great reforms are happening all the time, and they make the process much more convenient and reliable.

While Texas is making solar simpler, it’s also helping consumers have a good experience when going solar. As of this month, Texas law now also requires solar salespeople to register with the Texas Department of Licensing and Regulation. The same bill standardizes contracts and provides for mandatory disclosures of upfront cost and financing terms. The whole solar industry benefits when customers have a good solar experience. Word of mouth is vital to keeping solar shining.

There's yet another pro-solar Texas law that's also going into effect this month: in addition to SB 1202 (streamlining solar permits) and SB 1036 (regulating solar sales tactics), the legislature is also supporting the dissemination of information about your options when going solar via SB 1697. You can read more about these three brand-new pro-solar state laws here.

The end of the solar tax credit is not the end of the solar industry. Far from it.

---

Dori Wolf is Senior Texas Program Associate for Solar United Neighbors, a vendor and neutral nonprofit with more than 15 years helping people go solar. Their free Solar Help Desk walks you through the details. Also check out their Go Solar Guide and Solar Owner’s Manual.

Solar United Neighbors also helps you find the best retail electricity plan through its partnership with Texas Power Guide.

Here are six ideas for growing the energy industry workforce. Photo via Getty Images

Expert: 6 solutions to address the energy industry’s talent shortage

Guest Column

Across the energy sector, companies are facing the growing challenge of finding skilled workers. In fact, 71% of energy employers say they are struggling to fill open roles. What is causing the shortage? A mix of factors, including an aging workforce, outdated perceptions of the industry and a rising global demand for energy.

This talent gap threatens progress on big goals like transitioning to cleaner energy, upgrading infrastructure and driving innovation in renewables. Solving the problem isn’t simple, but it is possible. It is going to take a coordinated, long-term approach that includes education, recruitment, training, retention and supportive policies. Let’s explore some practical solutions.

1. Build a strong foundation through STEM and career pathway awareness

Solving the workforce shortage starts well before college or the first job offer. We need to reach students early, with STEM education, career exposure and clear pathways to energy careers. Elementary, middle and high school programs that connect science and math with real-world energy applications can spark curiosity and show students the range of opportunities available in the energy industry.

Organizations like the Energy Education Foundation are helping by partnering with educators and employers to align curriculum with real industry needs and bring energy topics to life in the classroom. We also need to ensure students understand the full range of energy systems, from traditional oil and gas to renewables like wind and solar, as well as nuclear, hydrogen and other emerging technologies. A broad, well-rounded understanding of the entire energy value chain will better prepare them for the future of work in this dynamic industry.

As technologies evolve, so must the systems that prepare people to work with them. Energy companies can collaborate with universities, trade schools and community colleges to design programs that match today’s job requirements through hands-on apprenticeships, industry-recognized certifications and digital skills training.

Affordability can also be a barrier for many students who are interested in energy careers but face financial obstacles to higher education. While four-year degrees are important for some roles, they are not the only path into the industry. Trade schools, community colleges and certificate programs offer fast, affordable routes into high-demand jobs, often with strong earning potential right out of the gate. The industry can do more to elevate these options by promoting offshore, field and technical roles as innovative, high-impact careers.

2. Help today’s workforce learn new skills

As more energy companies adopt digital tools like automation, artificial intelligence and data analytics, there is a growing need for employees with the tech skills to match. But right now, there is a shortage of those skills across the board. That is why upskilling and reskilling current employees is so important. Companies can create internal training platforms, offer recognized certifications and explore immersive tools like virtual reality to simulate real-world scenarios. Cross-training employees to understand both traditional and renewable energy systems can also help build more flexible, future-ready teams.

3. Open the doors to broaden and diversify talent

The energy industry, being a global enterprise, has much to gain from embracing diversity across various dimensions, including cultural backgrounds, languages, work styles and time zone considerations. Research shows that culturally diverse companies are 33% more likely to out-innovate their competitors. These organizations are better equipped to generate a wide range of ideas and transform them into valuable products or services. The most successful firms offer equitable advancement opportunities, paid time off, family leave, mentoring and sponsorship programs and environments grounded in respect and fairness. These practices make a big difference not just in attracting talent, but in keeping it.

4. Use technology to support, not replace, people

From exploring new energy sources to managing the grid and storing power, technology is transforming the industry. But instead of replacing jobs, tools like AI and automation can be used to make work safer, smarter and more efficient. For instance, smart grid systems and AI-powered planning tools can cut downtime and boost productivity, freeing up skilled employees to focus on more strategic and creative tasks. When used thoughtfully, technology becomes an ally that helps teams do their best work.

5. Strengthen retention through purpose

While offering competitive salaries is important, it’s only one part of the equation. Many energy companies face challenges in areas such as career development, workplace culture and building trust in leadership. These elements play a significant role in shaping the employee experience and can strongly influence retention.

For younger professionals, particularly millennials and Gen Z, the opportunity to address sustainability challenges is especially compelling. A 2024 survey revealed that nearly 90% of respondents in these groups believe it’s essential for their work to make a difference, with 88% stating that their job should align with their personal values. Clean energy careers strongly align with these expectations. In fact, 81% of surveyed individuals see the clean energy sector as a promising career path. Among the top reasons cited were the sector’s positive environmental impact and the opportunity to be part of something larger than themselves. Even among those currently employed in unrelated fields, 65% expressed a willingness to pivot to a clean energy role, underscoring the growing demand for purpose-driven careers. People want to feel like their work matters and that they are growing. In a fast-evolving sector, building a strong team is about offering purpose, not just perks.

6. Embrace collaboration

No single company can solve the energy workforce shortage on its own. This is a shared challenge, and it needs a shared solution. That means governments, schools and businesses need to collaborate on everything from education to job training. As an example, it is critical to align training programs with real workforce needs. That means sharing data across sectors to understand where demand is heading and making sure employees are trained for the jobs of the future.

The energy sector is at a turning point. As we continue to embrace energy expansion, we need a workforce that can make it all happen. That requires more than quick fixes. It takes a long-term, inclusive approach that supports talent at every stage, from early education to career advancement. By investing in people as intentionally as we invest in technology and infrastructure, we can close the talent gap and build a workforce ready to power a stronger energy future.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


Texas must confront the growing gap between renewable potential and real-time reliability. Photo via Getty Images

Expert on powering Texas: The promise and challenges of renewable energy

Guest Column

Texas leads the nation in wind and solar energy, but that leadership is being tested as a surge in project cancellations raises new concerns about the future of renewables in the state.

While Texas clean energy has grown significantly in recent years, solar and wind often fall short of meeting peak electricity demand. As extreme weather, rising demand, and project cancellations strain the grid, Texas must confront the growing gap between renewable potential and real-time reliability.

Solar and Wind Energy

Solar generation in the Lone Star State has grown substantially over the past decade. The Texas solar industry is estimated to employ over 12,000 Texans and is contributing billions in local tax revenue and landowner income, and solar and storage are the largest sources of new energy on the Texas grid.

With a significant number of sunny days, Texas’ geography also enables it to be among the states with the greatest energy potential for solar power generation. Further moving to advance the use of solar energy generation, the 89th Texas legislature passed SB 1202 which accelerates the permitting process for home solar and energy storage installations. SB 1202 empowers homeowners to strengthen their own energy security and supports greater grid resilience across the state.

Texas has also led the United States in wind energy production for more than 17 years, with 239 wind-related projects and over 15,300 wind turbines, which is more than any other state. The economic impact of wind energy in Texas is substantial, with the industry contributing $1.7 billion a year to the state’s gross domestic product. With wind electric power generation jobs offering an average annual wage of $109,826, the growing sector provides lucrative employment opportunities.

However, solar and wind currently struggle to meet Texas’ peak electricity demand from 5 pm to 7 pm — a time when millions of residents return home, temperatures remain high and air conditioner use surges. Solar generation begins to decline just as demand ramps up, and wind production is often inconsistent during these hours. Without sufficient long-duration storage or dispatchable backup power, this mismatch between supply and demand presents a significant reliability risk — one that becomes especially urgent during heat waves and extreme weather events, as seen during ERCOT conservation alerts.

Geothermal Energy

Geothermal energy uses heat from beneath the Earth’s surface to provide reliable, low-emission power with minimal land use and no fuel transport. Though it currently supplies a small share of energy, Texas is emerging as a leader in its development, supported by state leaders, industry, and environmentalists. During the 89th legislative session, Texas passed HB 3240 to create a Geothermal Energy Production Policy Council, set to begin work on September 1, 2025.

In 2024, Sage Geosystems was selected to develop geothermal projects at the Naval Air Station in Corpus Christi, expanding its work with the Department of Defense. In partnership with the Environmental Security Technology Certification Program, Sage is using its proprietary Geopressured Geothermal Systems technology to evaluate the potential for geothermal to be a source of clean and consistent energy at the base.

One limitation of geothermal energy is location. Deep drilling is costly, and areas with high water tables, like some coastal regions, may not be viable.

Hydroelectric Energy

While hydropower plays a minor role in Texas’ energy mix, it is still an essential energy source. Its output depends on water availability, which can be affected by seasonal and long-term changes like droughts.

Texas has 26 hydropower plants with a total capacity of nearly 738 megawatts, serving about 2.9 million people as of 2019. Harris County holds 43% of all hydropower generation jobs in the state, and in 2021, hydroelectric power generation contributed $700 million to Texas’ gross domestic product.

Federal funding is helping expand hydropower in Texas. The Southwestern Power Administration has committed about $103 million to support infrastructure, including $32 million for upgrades to Central Texas’s Whitney Dam. The 2021 Inflation Reduction Act added $369 billion in tax credits for clean energy, supporting dam retrofits nationwide. In 2022, the Department of Energy launched over $28 million in new funding through the Infrastructure Law to help meet national clean energy goals by 2035 and carbon neutrality by 2050.

Tidal Energy

Driven by the moon and sun, tidal energy is predictable but limited to coastal areas with strong tides. Although Texas has modest tidal potential, research is ongoing to optimize it. Texas A&M University is developing a floating test platform for hybrid renewable systems, integrating tidal, wave, wind, and solar energy. In addition, St. Mary’s University in San Antonio is prototyping small-scale tidal turbines using 3D printing technology.

While commercial tidal power remains in the research phase, the state’s offshore capabilities, engineering talent, and growing university-led innovation could make it a player in hybrid marine renewable systems. Floating platforms that integrate wave, tide, solar, and wind offer a compelling vision for offshore power generation suited to Texas’ unique coastal conditions.

Biomass Energy

Biomass energy is the largest renewable source worldwide, providing 55% of renewables and over 6% of global energy. While reliable, it can be less efficient, sometimes using more energy to burn the organic matter than it produces, and demand may exceed supply.

In Texas, biomass is a nominal part of the state’s energy portfolio. However, substantial research is being conducted by Texas A&M University to attempt to convert algae and food waste into a cost-efficient source of biomass material. In addition, UK-based biomass and renewable energy company Drax opened its North American headquarters in Houston, which created more than 100 new jobs in Texas’ renewable energy industry.

It’s clear that renewable energy is playing an increasingly important role in shaping Texas’ energy future. But the road ahead demands a realistic view: while these sources can reduce emissions and diversify our generation mix, they do not yet solve for peak load reliability — especially during the critical 5 pm to 7 pm window when grid stress is highest.

Meeting that challenge will require not just investment in renewables, but also innovation in grid-scale storage, flexible generation, market reform and consumer programs. A diversified, resilient energy portfolio — one that includes renewables and reliable dispatchable sources — will be the key to ensuring that Texas remains powered, prepared and prosperous for generations to come.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.