A new study on Mars is shining a light on the Earth's own climate mysteries. Image via UH.edu

Scientists at the University of Houston have found a new understanding of climate and weather on Mars.

The study, which was published in a new paper in AGU Advances and will be featured in AGU’s science magazine EOS, generated the first meridional profile of Mars’ radiant energy budget (REB). REB represents the balance or imbalance between absorbed solar energy and emitted thermal energy across latitudes. An energy surplus can lead to global warming, and a deficit results in global cooling, which helps provide insights to Earth's atmospheric processes too. The profile of Mars’ REB influences weather and climate patterns.

The study was led by Larry Guan, a graduate student in the Department of Physics at UH's College of Natural Sciences and Mathematics under the guidance of his advisors Professor Liming Li from the Department of Physics and Professor Xun Jiang from the Department of Earth and Atmospheric Sciences and other planetary scientists. UH graduate students Ellen Creecy and Xinyue Wang, renowned planetary scientists Germán Martínez, Ph.D. (Houston’s Lunar and Planetary Institute), Anthony Toigo, Ph.D. (Johns Hopkins University) and Mark Richardson, Ph.D. (Aeolis Research), and Prof. Agustín Sánchez-Lavega (Universidad del País, Vasco, Spain) and Prof. Yeon Joo Lee (Institute for Basic Science, South Korea) also assisted in the project.

The profile of Mars’ REB is based on long-term observations from orbiting spacecraft. It offers a detailed comparison of Mars’ REB to that of Earth, which has shown differences in the way each planet receives and radiates energy. Earth shows an energy surplus in the tropics and a deficit in the polar regions, while Mars exhibits opposite behavioral patterns.

The surplus is evident in Mars’ southern hemisphere during spring, which plays a role in driving the planet’s atmospheric circulation and triggering the most prominent feature of weather on the planet, global dust storms. The storms can envelop the entire planet, alter the distribution of energy, and provide a dynamic element that affects Mars’ weather patterns and climate.

The research team is currently examining long-term energy imbalances on Mars and how it influences the planet’s climate.

“The REB difference between the two planets is truly fascinating, so continued monitoring will deepen our understanding of Mars’ climate dynamics,” Li says in a news release.

The global-scale energy imbalance on Earth was recently discovered, and it contributes to global warming at a “magnitude comparable to that caused by increasing greenhouse gases,” according to the study. Mars has an environment that differs due to its thinner atmosphere and lack of anthropogenic effects.

“The work in establishing Mars’ first meridional radiant energy budget profile is noteworthy,” Guan adds. “Understanding Earth’s large-scale climate and atmospheric circulation relies heavily on REB profiles, so having one for Mars allows critical climatological comparisons and lays the groundwork for Martian meteorology.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers harness dialysis for new wastewater treatment process

waste not

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”

Virtual power plant from Houston-area company debuts at CES

Powering Up

Brookshire, Texas-based decentralized energy solution company AISPEX Inc. debuted its virtual power plant (VPP) platform, known as EnerVision, earlier this month at CES in Las Vegas.

EnerVision offers energy efficiency, savings and performance for residential, commercial and industrial users by combining state-of-the-art hardware with an AI-powered cloud platform. The VPP technology enables users to sell excess energy back to the grid during demand peaks.

AISPEX, or Advanced Integrated Systems for Power Exchange, has evolved from an EV charging solutions company into an energy systems innovator since it was founded in 2018. It focuses on integrating solar energy and decentralized systems to overcome grid limitations, reduce upgrade costs and accelerate electrification.

Regarding grid issues, the company hopes by leveraging decentralized solar power and Battery Energy Storage Systems (BESS), EnerVision can help bring energy generation closer to consumption, which can ease grid strain and enhance stability. EnerVision plans to do this by addressing “aging infrastructure, grid congestion, increasing electrification and the need for resilience against extreme weather and cyber threats,” according to the company.

One of the company's latest VPP products is SuperHub, which is an all-in-one charging station designed to combine components like solar panels, energy storage systems, fast EV chargers, mobile EV chargers and LCD display screens, into a unified, efficient solution.

“It supports clean energy generation and storage but also ensures seamless charging for electric vehicles while providing opportunities for communication or advertising through its built-in displays,” says Vivian Nie, a representative from AISPEX.

Also at CES, AISPEX displayed its REP Services, which offer flexible pricing, peak load management, and renewable energy options for end-to-end solutions, and its Integrated Systems, which combine solar power, battery storage, EV charging and LCD displays.

“We had the opportunity to meet new partners, reconnect with so many old friends, and dive into discussions about the future of e-mobility and energy solutions,” CEO Paul Nie said on LinkedIn.

In 2024, AISPEX installed its DC Fast chargers at two California Volkswagen locations.

Houston-based energy transition leader talks new role, shares future predictions

new hire

For some companies, all that’s needed to make a seismic shift toward innovation is to hire the right person to steer the organization in a transcendent direction.

Arcadis, a sustainable design, engineering, and consultancy solutions company, is channeling this concept by hiring Masjood Jafri as its new National Energy Transition Strategic Advisor and Business Development Lead. In the role, Jafri will help lead and develop the company’s energy transition business growth and strategy for its interests in the United States alongside Matthew Yonkin, National Energy Transition Solution Leader, based in New York.

“I have a fairly diverse background, with about a decade in the energy industry with an oil and gas, power and petrochemicals background,” says Jafri, who moved to Houston from the U.K. back in 2012. “But prior to that, I had about a decade in the infrastructure world, looking into the transportation market, and the manufacturing sector, as well as working as a lender's advisor in the capital market. So, in this very transformative period, you need to connect all the dots.”

With just over six months in his new role, Jafri leverages his 20 years of experience in leading the successful delivery of capital programs and projects as the strategic advisor to Arcadis’ own capital projects.

“Arcadis is on a journey to be the sustainability partner or sustainable transformation partner for our clients,” Jafri says. “And the path to sustainability goes through energy transition. Arcadis has been investing quite heavily in that space for us to be a leading consulting services provider for energy companies.

Jafri’s hire comes as Arcadis moves its business operations in Houston to a new centralized office in the Galleria area. According to Jafri, this will bring the company’s expertise under one roof. With Houston being the energy capital of the world, Jafri says Arcadis is positioned to lead and deliver results for the energy demand in the United States and globally.

“Houston is the Silicon Valley of energy,” Jafri says. “The challenge is to continue to drive with that force. … We have the talent in the city, we have the right mindset—very entrepreneurial, and obviously a lot of capital commitment to make these changes.

“And it is not just coming from the private sector, it is also coming from the public sector. So, I think the stars are aligning in the context of what is needed for us to have a planet-positive future and Houston being suitably positioned to deliver to that,” he adds.

And while keeping up with the demand for energy and moving towards clean energy are equally important challenges, Jafri is more focused on addressing the latter.

“Clean energy is certainly a bigger challenge because it requires a very broad area of energy sources to come together and to make it cleaner,” Jafri says. “Technologically, some of those things are not ready yet, at least to be scalable in a commercial and profitable way. So that's the challenge. I think it is a clean energy challenge, but obviously, the demand side makes it a bit more complicated.”

Texans, and more specifically Houstonians, have seen firsthand the complications of demand and the pitfalls of energy security and resilience. Addressing these issues, along with many other sustainability challenges, will also be part of Jafri’s core mission at Arcadis.

“As we saw in severe climate conditions, the grid is vulnerable and so are the people connected to the grid,” Jafri says. “The better we can make the grid more resilient and more adaptive to these changes, the more satisfactory conditions will be on the ground for people who are affected.”

Jafri asserts that the industry is already considering numerous options, including all colors of hydrogen, solar, wind and geothermal, in addition to fossil-based energy (natural gas). These measures are already in progress, but consumers are concerned with climate change and, of course, the impact on their electricity bills. Still, states like California, Washington and Texas are making progress.

“I would say by the year 2030 you would start to see a pretty significant movement in the right direction,” Jafri says. “If you look from a federal policy perspective, we want to produce 100 percent of the electricity clean by 2035. That is an expected goal, but it’s all happening.”