Balancing renewable energy growth and grid resilience requires a multifaceted approach. Photo via Getty Images

The global energy sector is on an exhilarating trajectory, teeming with promising technologies and unprecedented opportunities for a sustainable future. Yet, we find ourselves grappling with the challenges of reliability and affordability. As both a researcher in the field of power electronics and a consumer with bills to pay, I find myself experiencing mixed feelings.

As a researcher, I am thrilled by the progress we have achieved, particularly in energy conversion. The exponential growth of renewable energy technologies in Texas and beyond, including wind turbines and solar PV systems, is cause for celebration. These innovations, coupled with supportive policies, have facilitated widespread deployment and the potential to significantly reduce greenhouse gas emissions, combat climate change, and create a brighter future for our children.

While renewable energy resources can play a crucial role in maintaining the supply-demand balance of the grid, as they did by performing very well during the recent 2023 Texas heat wave, their intermittent and unpredictable nature can also pose a significant challenge to the power system. Unlike traditional power plants that operate continuously, wind turbines and solar PV systems rely on weather conditions for optimal performance. Fluctuations in wind speed, cloud cover, and sunlight intensity can lead to imbalances between energy supply and demand. This imbalance will worsen as the anticipated influx of electric vehicles and their charging needs come into play.

The volatility of renewables contributes to price fluctuations in the electricity market, which not only affects consumers but also raises concerns about grid resilience during extreme weather events. My electricity bill increased by over 20 percent compared to last year, partly caused by inflation, but mainly due to higher operational costs in the Texas electricity market.

Texas witnessed firsthand the consequences of a not-so-resilient grid through the severe power outages experienced during the "Polar Vortex" in February 2021. These outages not only disrupted lives but also disproportionately impacted vulnerable populations. During that time, my wife was expecting our second child. Enduring two nights in our frigid home without electricity or a fireplace was an ordeal that we navigated relatively unscathed. But it made me think of those less fortunate. These circumstances underscore the importance of establishing a robust, dependable and affordable electrical power system.

Balancing renewable energy growth and grid resilience requires a multifaceted approach:

  1. Investment in Infrastructure and Storage: It is crucial to strengthen the grid and ensure a reliable power supply. Upgrading transmission and distribution systems, integrating advanced monitoring and control technologies, and enhancing grid interconnections are essential. The Texas Legislature established the Powering Texas Forward Act, also known as Senate Bill 2627, a taxpayer-funded loan program, to encourage investment. While excluding certain renewable energy facilities and electric energy storage, it recognizes the need for a reliable grid. Hydrogen fuel cell generation facilities could be a potential solution, providing clean and stable energy while remaining eligible for the loan program. Additionally, implementing large-scale energy storage systems utilizing batteries and hydrogen storage technologies can mitigate renewable energy volatility by storing excess energy until needed. The Texas energy industry's push for these advances is a significant step in the right direction.
  2. Diversification of Energy Sources: While renewables play a crucial role in decarbonization, a mix of renewable sources, natural gas, and other low-carbon resources is necessary for the foreseeable future. Implementing carbon capture, utilization, and storage (CCUS) technologies across industries can mitigate associated climate impacts. The failure of Senate Bill 624, which would have had significant repercussions for wind and solar facilities, indicates that Texas legislators are genuinely concerned about clean, alternative sources of energy. However, a lot more needs to be done, including coordinated actions between federal, state, and international governments, to address the urgent issue of climate change. Texas can leverage its hydrocarbon/energy expertise to produce economical green and blue hydrogen, advanced fuel cells and hydrogen-based internal combustion engine technologies, enabling a smoother energy transition in terms of usage and jobs.
  3. Educating the General Public: It is critical to help people understand the necessity of modernizing our energy infrastructure; the benefits and opportunities it brings and the transformations we can expect. Institutions like the University of Houston play a crucial role in advancing clean energy technologies and educating the future energy workforce. The establishment of the Texas University Fund (TUF), with a budget of over $3 billion, through a constitutional amendment in November 2023, will be a pivotal step toward this goal.

When addressing the energy transformation and grid resilience dilemma, the real-life impact on human beings must be of prime importance. Our leaders should focus on a balanced approach considering grid infrastructure investment, diversification of energy sources, energy storage solutions, and public education. By adopting this multifaceted strategy, we can ensure a reliable, resilient, and affordable energy future.

———

Harish Krishnamoorthy is an assistant professor of electrical and computer engineering and associate director of the Power Electronics, Microgrids and Subsea Electric Systems Center (PEMSEC) at the University of Houston.

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Photo via htxenergytransition.org

3 Houston companies leading the way towards a low-carbon future

the view from heti

As the world population makes a jump towards more than 9 billion people by 2050, the race to net-zero is more important than ever. An increase in population means an increase in the demand for energy. With everything from greenhouse gases, pollution, carbon and nitrogen deposition putting a strain on planet Earth, community and business leaders are making commitments to advance the energy transition.

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Here are three ways that these energy companies are working towards an energy abundant, low-carbon future.

NRG Energy

Headquarted in Houston, NRG Energy is the leading integrated power company in the U.S. In 2022, NRG introduced a new Sustainability and Resiliency Impact Study as part of Harris County’s Climate Action Plan to reduce the city’s carbon emissions by 40% by 2030. The initiative includes $34 million in park upgrades and is expected to save $54 million.

That same year, Evolve Houston, a nonprofit working to accelerate electric vehicle adoption within the Greater Houston area, launched an e-mobility microgrant initiative funded by Evolve Corporate Catalysts, General Motors and bp. With five founding members, among them being NRG Energy and Shell, the goal of the initiative is to improve regional air quality and reduce greenhouse gas emissions in the Greater Houston area.

At the top of 2023, Reliant Energy and NRG launched the Simple Solar Sell Back electricity plan for Texans aimed at providing solar panels to local homes for lower electricity bills.

Shell

On a mission to improve their own operations, Shell is addressing energy efficiency over time and capturing or offsetting unavoidable greenhouse gas emissions. Headquartered in London. Shell is on a mission to become a net-zero emissions energy business by 2050. In 2022, the British multinational company invested $6 million to create the Prairie View A&M Shell Nature-Based Solutions Research Program, funded through the company’s Projects & Technology organization dedicated to funding research to develop new technology solutions.

In March of 2022, Shell gifted the University of Houston $10 million to bolster the institution’s efforts to establish the Energy Transition Institute which focuses on the production and use of reliable, affordable and cleaner energy for all. The company also launched the residential power brand Shell Energy offering 100% renewable electricity plans.

ExxonMobil

ExxonMobil is one of the world’s largest publicly traded international oil and gas companies. In 2021, the multinational oil and gas corporation pledged to invest more than $15 million in solutions to lower greenhouse gas emissions initiatives across six years. As a part of their approach to improve air quality, ExxonMobil is working to:

  • Understand the composition and extent of our emissions
  • Meet or exceed environmental regulations
  • Reduce air emissions to minimize potential impacts on local communities
  • Monitor the science and health standards related to air quality

Throughout the years, plastics have become an essential component of products, packaging, construction, transportation, electronics and more. While plastics are durable, lightweight and cheap, they also emit 3.4% of global greenhouse gas emissions. Late last year, the major corporation announced the successful startup of one of the largest advanced recycling facilities in North America. Located in Baytown, Texas, the recycling facility uses proprietary technology to break down raw materials for new products and is expected to have nearly 1 billion pounds of annual advanced recycling capacity by the end of 2026.

According to their 2023 Advancing Climate Action Progress Report released early this year, the corporation plans to reduce greenhouse gas emissions through 2030.

From resolving power grid issues to developing renewable energy technologies, Houston energy companies are powering today to empower the future.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."