Balancing renewable energy growth and grid resilience requires a multifaceted approach. Photo via Getty Images

The global energy sector is on an exhilarating trajectory, teeming with promising technologies and unprecedented opportunities for a sustainable future. Yet, we find ourselves grappling with the challenges of reliability and affordability. As both a researcher in the field of power electronics and a consumer with bills to pay, I find myself experiencing mixed feelings.

As a researcher, I am thrilled by the progress we have achieved, particularly in energy conversion. The exponential growth of renewable energy technologies in Texas and beyond, including wind turbines and solar PV systems, is cause for celebration. These innovations, coupled with supportive policies, have facilitated widespread deployment and the potential to significantly reduce greenhouse gas emissions, combat climate change, and create a brighter future for our children.

While renewable energy resources can play a crucial role in maintaining the supply-demand balance of the grid, as they did by performing very well during the recent 2023 Texas heat wave, their intermittent and unpredictable nature can also pose a significant challenge to the power system. Unlike traditional power plants that operate continuously, wind turbines and solar PV systems rely on weather conditions for optimal performance. Fluctuations in wind speed, cloud cover, and sunlight intensity can lead to imbalances between energy supply and demand. This imbalance will worsen as the anticipated influx of electric vehicles and their charging needs come into play.

The volatility of renewables contributes to price fluctuations in the electricity market, which not only affects consumers but also raises concerns about grid resilience during extreme weather events. My electricity bill increased by over 20 percent compared to last year, partly caused by inflation, but mainly due to higher operational costs in the Texas electricity market.

Texas witnessed firsthand the consequences of a not-so-resilient grid through the severe power outages experienced during the "Polar Vortex" in February 2021. These outages not only disrupted lives but also disproportionately impacted vulnerable populations. During that time, my wife was expecting our second child. Enduring two nights in our frigid home without electricity or a fireplace was an ordeal that we navigated relatively unscathed. But it made me think of those less fortunate. These circumstances underscore the importance of establishing a robust, dependable and affordable electrical power system.

Balancing renewable energy growth and grid resilience requires a multifaceted approach:

  1. Investment in Infrastructure and Storage: It is crucial to strengthen the grid and ensure a reliable power supply. Upgrading transmission and distribution systems, integrating advanced monitoring and control technologies, and enhancing grid interconnections are essential. The Texas Legislature established the Powering Texas Forward Act, also known as Senate Bill 2627, a taxpayer-funded loan program, to encourage investment. While excluding certain renewable energy facilities and electric energy storage, it recognizes the need for a reliable grid. Hydrogen fuel cell generation facilities could be a potential solution, providing clean and stable energy while remaining eligible for the loan program. Additionally, implementing large-scale energy storage systems utilizing batteries and hydrogen storage technologies can mitigate renewable energy volatility by storing excess energy until needed. The Texas energy industry's push for these advances is a significant step in the right direction.
  2. Diversification of Energy Sources: While renewables play a crucial role in decarbonization, a mix of renewable sources, natural gas, and other low-carbon resources is necessary for the foreseeable future. Implementing carbon capture, utilization, and storage (CCUS) technologies across industries can mitigate associated climate impacts. The failure of Senate Bill 624, which would have had significant repercussions for wind and solar facilities, indicates that Texas legislators are genuinely concerned about clean, alternative sources of energy. However, a lot more needs to be done, including coordinated actions between federal, state, and international governments, to address the urgent issue of climate change. Texas can leverage its hydrocarbon/energy expertise to produce economical green and blue hydrogen, advanced fuel cells and hydrogen-based internal combustion engine technologies, enabling a smoother energy transition in terms of usage and jobs.
  3. Educating the General Public: It is critical to help people understand the necessity of modernizing our energy infrastructure; the benefits and opportunities it brings and the transformations we can expect. Institutions like the University of Houston play a crucial role in advancing clean energy technologies and educating the future energy workforce. The establishment of the Texas University Fund (TUF), with a budget of over $3 billion, through a constitutional amendment in November 2023, will be a pivotal step toward this goal.

When addressing the energy transformation and grid resilience dilemma, the real-life impact on human beings must be of prime importance. Our leaders should focus on a balanced approach considering grid infrastructure investment, diversification of energy sources, energy storage solutions, and public education. By adopting this multifaceted strategy, we can ensure a reliable, resilient, and affordable energy future.

———

Harish Krishnamoorthy is an assistant professor of electrical and computer engineering and associate director of the Power Electronics, Microgrids and Subsea Electric Systems Center (PEMSEC) at the University of Houston.

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Photo via htxenergytransition.org

3 Houston companies leading the way towards a low-carbon future

the view from heti

As the world population makes a jump towards more than 9 billion people by 2050, the race to net-zero is more important than ever. An increase in population means an increase in the demand for energy. With everything from greenhouse gases, pollution, carbon and nitrogen deposition putting a strain on planet Earth, community and business leaders are making commitments to advance the energy transition.

Companies like ExxonMobil, NRG, and Shell play an important role in helping the world transition to renewable energy sources. Here are three ways that these energy companies are working towards an energy abundant, low-carbon future.

NRG Energy

Headquarted in Houston, NRG Energy is the leading integrated power company in the U.S. In 2022, NRG introduced a new Sustainability and Resiliency Impact Study as part of Harris County’s Climate Action Plan to reduce the city’s carbon emissions by 40% by 2030. The initiative includes $34 million in park upgrades and is expected to save $54 million.

That same year, Evolve Houston, a nonprofit working to accelerate electric vehicle adoption within the Greater Houston area, launched an e-mobility microgrant initiative funded by Evolve Corporate Catalysts, General Motors and bp. With five founding members, among them being NRG Energy and Shell, the goal of the initiative is to improve regional air quality and reduce greenhouse gas emissions in the Greater Houston area.

At the top of 2023, Reliant Energy and NRG launched the Simple Solar Sell Back electricity plan for Texans aimed at providing solar panels to local homes for lower electricity bills.

Shell

On a mission to improve their own operations, Shell is addressing energy efficiency over time and capturing or offsetting unavoidable greenhouse gas emissions. Headquartered in London. Shell is on a mission to become a net-zero emissions energy business by 2050. In 2022, the British multinational company invested $6 million to create the Prairie View A&M Shell Nature-Based Solutions Research Program, funded through the company’s Projects & Technology organization dedicated to funding research to develop new technology solutions.

In March of 2022, Shell gifted the University of Houston $10 million to bolster the institution’s efforts to establish the Energy Transition Institute which focuses on the production and use of reliable, affordable and cleaner energy for all. The company also launched the residential power brand Shell Energy offering 100% renewable electricity plans.

ExxonMobil

ExxonMobil is one of the world’s largest publicly traded international oil and gas companies. In 2021, the multinational oil and gas corporation pledged to invest more than $15 million in solutions to lower greenhouse gas emissions initiatives across six years. As a part of their approach to improve air quality, ExxonMobil is working to:

  • Understand the composition and extent of our emissions
  • Meet or exceed environmental regulations
  • Reduce air emissions to minimize potential impacts on local communities
  • Monitor the science and health standards related to air quality

Throughout the years, plastics have become an essential component of products, packaging, construction, transportation, electronics and more. While plastics are durable, lightweight and cheap, they also emit 3.4% of global greenhouse gas emissions. Late last year, the major corporation announced the successful startup of one of the largest advanced recycling facilities in North America. Located in Baytown, Texas, the recycling facility uses proprietary technology to break down raw materials for new products and is expected to have nearly 1 billion pounds of annual advanced recycling capacity by the end of 2026.

According to their 2023 Advancing Climate Action Progress Report released early this year, the corporation plans to reduce greenhouse gas emissions through 2030.

From resolving power grid issues to developing renewable energy technologies, Houston energy companies are powering today to empower the future.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE grants $13.7M tax credit to power Houston clean hydrogen project

power move

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.

Houston researchers reach 'surprising' revelation in materials recycling efforts

keep it clean

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.