Energytech Nexus has named its first COPILOT accelerator cohort. Photo via Getty Images.

Energytech Nexus, a Houston-based hub for energy startups, has named its inaugural cohort of 14 companies for the new COPILOT accelerator.

COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. The Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory backs the COPILOT accelerator.

The eight-month COPILOT program offers mentorship, training and networking for startups. Program participants will be tasked with developing pilot projects for their innovations.

Two Houston startups are members of the first COPILOT class:

  • GeoFuels, housed at Houston’s Greentown Labs, has come up with a novel approach to hydrogen production that relies on geothermal power and methane decomposition.
  • PolyQor, which converts plastic waste into eco-friendly construction materials. Its flagship EcoGrete product is an additive for concrete that enhances its properties while reducing carbon emissions. PolyQor’s headquarters is at Houston’s Greentown Labs.

Other members of the COPILOT cohort are:

  • Birmingham, Alabama-based Accelerate Wind, developer of a wind turbine for commercial buildings.
  • Ann Arbor, Michigan-based Aquora Biosystems, which specializes in organic waste biorefineries.
  • Phoenix-based EarthEn Energy, a developer of technology for thermo-mechanical energy storage.
  • New York City-based Electromaim, which installs small hydro-generators in buildings’ water systems.
  • Chandler, Arizona-based EnKoat, an advanced materials company whose flagship product, the IntelliKoat System, is a patented two-layer thermal and weather barrier roof coating for flat and low-slope commercial buildings.
  • Calgary, Canada-based Harber Coatings, which manufactures electroless nickel coating and electroless nickel plating.
  • Dallas-based Janta Power, which designs and makes 3D solar towers.
  • Miami-based NanoSieve, a developer of gas remediation technology.
  • Palo Alto, California-based Popper Power, which has developed a platform that turns streetlight networks into resilient, maintenance-free distributed charging infrastructure.
  • Buffalo, New York-based Siva Powers America, developer of small wind turbines for farms, utility companies and others with annual energy needs of 300,000 to 2 million kilowatt-hours.
  • Los Angeles-based Thermoshade, which specializes in cooling panels for outdoor environments.
  • Waukesha, Wisconsin-based V-Glass, Inc., developer of a vacuum-insulated glass for affordable high-efficiency windows.

“These startups reflect the future of energy access and resilience innovation,” said Juliana Garaizar, founding partner of Energytech Nexus. “By connecting them directly with partners through

COPILOT, we’re helping them overcome the ‘pilot gap’ to build solutions that scale.”

The startups will run pilot projects along the Gulf Coast for their inventions.

Manas Pathak's insights offer a glimpse into the future of energy storage and the innovations that companies like Earthen are bringing to the table. Photo via earthen.energy

Q&A: The breakthrough energy tech that could replace batteries forever

now streaming

In the rapidly evolving world of energy technology, few innovations hold as much promise as the solutions being developed by Earthen.

We recently had the opportunity to sit down with Manas Pathak, the CEO and co-founder of Earthen, to delve into the company's groundbreaking thermo-mechanical energy storage system. In this Q&A, we explore the core of Earthen's technology, its potential impact on the energy sector, and what the future holds.

Manas Pathak's insights offer a glimpse into the future of energy storage and the innovations that companies like Earthen are bringing to the table. As the energy sector continues to evolve, solutions like these will play a pivotal role in shaping a sustainable future.

Energy Tech Startups: Can you explain the unique approach Earthen takes with its thermo-mechanical energy storage using supercritical CO2?

Manas Pathak: Certainly. At Earthen, we've developed a thermo-mechanical energy storage solution that leverages supercritical CO2. This phase of CO2, achieved at high pressures and temperatures, behaves both as a liquid and a gas. It's central to our technology, offering a compact, safe, and cost-effective solution for long-duration energy storage. Think of it as a modern take on compressed air storage but using CO2 for superior results.

Q: With so many energy storage solutions emerging, what sets Earthen's system apart in terms of efficiency?

MP: Our system boasts a competitive round-trip efficiency of 78%, which is quite remarkable. To put it in perspective, this efficiency rivals that of lithium-ion batteries. The use of supercritical CO2 is central to achieving this efficiency, allowing us to harness its unique properties for optimal energy storage and retrieval.

Q: How does Earthen's technology integrate with existing infrastructure, like pipelines?

MP: One of the exciting applications of our technology is its ability to retrofit pipelines, converting them into energy storage assets. This means that existing infrastructure, like pipelines initially designed for other purposes, can be repurposed and utilized for energy storage, maximizing the use of resources and reducing the need for new constructions.

Q: What are Earthen's plans for the future, especially in terms of product launches and market presence?

MP: We're quite ambitious about our roadmap. We aim to launch our first commercial product by 2026-2027. As for our market strategy, we're targeting a diverse range of customer segments, from utility-scale energy storage to commercial-industrial spaces. Our mission is to democratize access to clean energy on a global scale, and we're taking concrete steps to realize that vision.

Q: Lastly, what inspired the creation of Earthen and its focus on equitable energy distribution?

MP: Growing up in India, I witnessed firsthand the disparities in energy consumption. The smallest homes often faced the longest power outages. This early realization highlighted the need for equitable energy distribution. At Earthen, our end goal is to see clean electrons reaching every corner of the globe, ensuring that everyone has access to reliable and sustainable energy.

———

This conversation has been edited for brevity and clarity. Click here to listen to the full episode.

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future. Digital Wildcatters is a Houston-based media platform and podcast network, which is home to the Energy Tech Startups podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.