A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Austin-based Base Power has opened an office and warehouse in Katy. Photo via basepowercompany.com.

Austin energy startup Base Power opens Katy office & expands Houston service

power move

An Austin startup that pairs electricity with backup power has started doing business in Houston.

Base Power announced this spring that it was entering the Houston market, with an initial focus on Cy-Fair, Spring, Cinco Ranch and Mission Bend. Now, Base Power is offering its service to households within the city of Houston.

To support its growth in the Houston area, Base Power has opened an office and warehouse in Katy. More than 30 people now work there. Plans to expand the Katy location are underway.

Base Power provides electricity that’s complemented by home backup power. Homes don’t need to be using solar power to sign up for Base Power’s service.

The startup said its service automatically supplies power to a home when the electric grid fails.

“Unlike traditional backup systems with high upfront costs, Base earns revenue by providing services to the grid — enabling Houstonians to get reliable backup and real savings,” Base Power said.

In addition to its standard service, Base Power has begun offering technology known as the Generator Recharge Port. This component allows a portable generator to plug into the Base battery system to recharge batteries during extended power outages.

“Houston has long been the energy capital of Texas, yet it has also endured some of the nation’s most painful lessons about unreliable power,” said Zach Dell, co-founder and CEO of Base Power. “We see Houston not just as a place to expand, but as a proving ground for how the future of energy should work — resilient, dependable, and built to serve homeowners when it matters most.”

Dell is the only son of Austin tech billionaire Michael Dell, a Houston native.

Base Power’s expansion in Houston adds to its Texas presence. The company now serves homeowners in the Houston, Dallas-Fort Worth and Austin areas. A partnership with homebuilder Lennar and collaborations with two utilities, GVEC and the Bandera Electric Cooperative, are helping drive Base Power’s business.

Base Power has raised more than $270 million in funding since its founding in 2023. This includes a $200 million series B round that will help finance construction of the company’s first factory in Texas and help fuel Base Power’s national expansion.

The startup’s investors include Andreessen Horowitz, Lightspeed Venture Partners, Valor Equity Partners, Thrive Capital, Altimeter, Terrain and Trust.

Daikin has tapped Engie North America to provide clean electricity for its Texas facilities, including the massive Daikin Texas Technology Park. Photo courtesy Daikin.

Daikin to run massive Houston-area campus on solar power through new Engie partnership

power deal

Japan-based HVAC manufacturer Daikin has struck a five-year deal with Houston-based Engie North America to fully power its Texas facilities with renewable energy.

The deal includes Daikin Texas Technology Park (DTTP), home to the company’s North American headquarters and its largest factory (and one of the largest factories in the world). The more than $500 million, 4.2 million-square-foot campus sits on nearly 500 acres in Waller.

The technology park, which held its grand opening in 2017, combines manufacturing, engineering, logistics, marketing, and sales operations for Amana, Daikin and Goodman HVAC products. Earlier this year, Daikin installed a solar array at DTTP to power its central chiller plant.

Under the new agreement, Daikin will pay Engie North America for clean electricity from the 260-megawatt Impact Solar Farm, located northeast of Dallas-Fort Worth in Lamar County. Engie North America is a subsidiary of French utility company Engie.

The $250 million solar farm, which London-based Lightsource BP started operating in 2021, produces about 450,000 megawatt-hours of solar power each year. Lightsource, which has an office in Austin, develops, finances and operates utility-scale renewable energy projects. Lightsource BP is a subsidiary of energy giant BP, whose North American headquarters is in Houston.

“This initiative represents a major step forward in aligning our operations with Daikin’s long-term sustainability goals,” Mike Knights, senior vice president of procurement at Daikin, said in a release.

Daikin aims to make its DTTP a net-zero factory by 2030.

The end of the solar tax credit is not the end of the solar industry. Photo by Kindel Media/Pexels

Texas still has its best solar days ahead of it, even as federal tax credit sunsets

Guest Column

If you follow energy policy, you already know that Congress repealed the 30% residential solar tax credit. This poses a significant challenge for continued growth in the market. It also provides an opportunity for the industry to grow in a smart, consumer-friendly way. That’s why in Texas, the story is what happens next: The state and the market are continuing to make going solar much simpler, better, and cheaper.

Policies are moving in the right direction. For example, starting this month, a bipartisan permitting reform takes effect that will cut red tape for home solar and batteries. It lets licensed third-party professionals review plans and perform inspections, requires agencies to post standardized rules and fees online, and allows homeowners to start work once those third-party approvals are submitted. It also shifts negligence liability to the third-party reviewer, thereby reducing municipal risk while accelerating safe, code-compliant installs. In plain English: fewer bottlenecks, faster installs, and lower “soft costs.”

As a result, Houston is already piloting the National Renewable Energy Lab’s free SolarAPP+ to auto-approve standard solar designs, which cuts roughly 12 days from typical timelines. Independent analyses estimate that these automated permitting rules could trim rooftop solar costs by thousands. In other words, even small, costless policy changes like this can save you almost as much money as the huge solar tax credit did, and these great reforms are happening all the time, and they make the process much more convenient and reliable.

While Texas is making solar simpler, it’s also helping consumers have a good experience when going solar. As of this month, Texas law now also requires solar salespeople to register with the Texas Department of Licensing and Regulation. The same bill standardizes contracts and provides for mandatory disclosures of upfront cost and financing terms. The whole solar industry benefits when customers have a good solar experience. Word of mouth is vital to keeping solar shining.

There's yet another pro-solar Texas law that's also going into effect this month: in addition to SB 1202 (streamlining solar permits) and SB 1036 (regulating solar sales tactics), the legislature is also supporting the dissemination of information about your options when going solar via SB 1697. You can read more about these three brand-new pro-solar state laws here.

The end of the solar tax credit is not the end of the solar industry. Far from it.

---

Dori Wolf is Senior Texas Program Associate for Solar United Neighbors, a vendor and neutral nonprofit with more than 15 years helping people go solar. Their free Solar Help Desk walks you through the details. Also check out their Go Solar Guide and Solar Owner’s Manual.

Solar United Neighbors also helps you find the best retail electricity plan through its partnership with Texas Power Guide.

Sunnova has been acquired. And its former CEO has launched a new startup. Photo via sunnova.com

Sunnova assets officially sold as founder launches new Houston energy startup

solar shift

Solaris Assets has completed its acquisition of the majority of Sunnova Energy International’s residential solar assets. Houston-based Sunnova filed for Chapter 11 bankruptcy this summer after piling up billions of dollars in debt.

Meanwhile, Sunnova founder and former CEO John Berger has launched a Houston-based home energy services startup, Otovo USA, which just received more than $4 million in seed funding.

Solaris now owns Sunnova’s residential solar services platform and its solar generation and storage portfolio, along with leases, loans and power purchase agreements. Sunnova’s operations are being shifted to SunStrong Management, an Austin-based asset manager for the renewable energy sector.

“By bringing together SunStrong’s asset management expertise with Sunnova’s nationally scaled customer base, we are creating a stronger, more capable leader in the solar industry,” Brendon Merkley, CEO of SunStrong, said in a news release. “Our priority is to maintain the highest levels of service for customers as we expand our footprint as a premier solar asset servicer.”

In June, Sunnova sold its new-home business to homebuilder Lennar for $15.2 million and sold certain assets to investment firm Atlas SP Partners for $15 million.

As of December, Sunnova’s debt totaled nearly $10.7 billion, Reuters reported. Sunnova faced numerous challenges in its quest to survive, including higher interest rates, the reduction of solar incentives in California, and a shakeup in federal subsidies for renewable energy.

Sunnova filed for Chapter 11 bankruptcy in June. A month later, a bankruptcy judge approved the court-supervised sale of Sunnova. Solaris’ acquisition of Sunnova closed Sept. 3.

As SunStrong absorbs the bulk of Sunnova’s assets, Berger — who quit in March as Sunnova’s CEO — has formed a new business. He’s now the founder and CEO of Otovo USA, a partner of European residential power company Otovo.

Otovo USA offers solar power systems, solar batteries, standby generators, EV chargers, electric-load managers, and other power generation and management systems. Otovo’s AI-supported offerings are now available in Texas; the company plans to expand nationwide.

Otovo USA raised its seed funding from the EIC Rose Rock Venture Fund, which invests in energy startups.

“Otovo USA is here to help the millions of Americans with home energy services that are fed up with the complexities of warranties, juggling multiple vendors, and long repair times,” Berger said. The startup, he added, “is bringing customers what they really need: reliable power and a single partner accountable for keeping it up and running. It’s your power, backed by ours.”

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.