A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Austin-based Base Power has opened an office and warehouse in Katy. Photo via basepowercompany.com.

Austin energy startup Base Power opens Katy office & expands Houston service

power move

An Austin startup that pairs electricity with backup power has started doing business in Houston.

Base Power announced this spring that it was entering the Houston market, with an initial focus on Cy-Fair, Spring, Cinco Ranch and Mission Bend. Now, Base Power is offering its service to households within the city of Houston.

To support its growth in the Houston area, Base Power has opened an office and warehouse in Katy. More than 30 people now work there. Plans to expand the Katy location are underway.

Base Power provides electricity that’s complemented by home backup power. Homes don’t need to be using solar power to sign up for Base Power’s service.

The startup said its service automatically supplies power to a home when the electric grid fails.

“Unlike traditional backup systems with high upfront costs, Base earns revenue by providing services to the grid — enabling Houstonians to get reliable backup and real savings,” Base Power said.

In addition to its standard service, Base Power has begun offering technology known as the Generator Recharge Port. This component allows a portable generator to plug into the Base battery system to recharge batteries during extended power outages.

“Houston has long been the energy capital of Texas, yet it has also endured some of the nation’s most painful lessons about unreliable power,” said Zach Dell, co-founder and CEO of Base Power. “We see Houston not just as a place to expand, but as a proving ground for how the future of energy should work — resilient, dependable, and built to serve homeowners when it matters most.”

Dell is the only son of Austin tech billionaire Michael Dell, a Houston native.

Base Power’s expansion in Houston adds to its Texas presence. The company now serves homeowners in the Houston, Dallas-Fort Worth and Austin areas. A partnership with homebuilder Lennar and collaborations with two utilities, GVEC and the Bandera Electric Cooperative, are helping drive Base Power’s business.

Base Power has raised more than $270 million in funding since its founding in 2023. This includes a $200 million series B round that will help finance construction of the company’s first factory in Texas and help fuel Base Power’s national expansion.

The startup’s investors include Andreessen Horowitz, Lightspeed Venture Partners, Valor Equity Partners, Thrive Capital, Altimeter, Terrain and Trust.

Daikin has tapped Engie North America to provide clean electricity for its Texas facilities, including the massive Daikin Texas Technology Park. Photo courtesy Daikin.

Daikin to run massive Houston-area campus on solar power through new Engie partnership

power deal

Japan-based HVAC manufacturer Daikin has struck a five-year deal with Houston-based Engie North America to fully power its Texas facilities with renewable energy.

The deal includes Daikin Texas Technology Park (DTTP), home to the company’s North American headquarters and its largest factory (and one of the largest factories in the world). The more than $500 million, 4.2 million-square-foot campus sits on nearly 500 acres in Waller.

The technology park, which held its grand opening in 2017, combines manufacturing, engineering, logistics, marketing, and sales operations for Amana, Daikin and Goodman HVAC products. Earlier this year, Daikin installed a solar array at DTTP to power its central chiller plant.

Under the new agreement, Daikin will pay Engie North America for clean electricity from the 260-megawatt Impact Solar Farm, located northeast of Dallas-Fort Worth in Lamar County. Engie North America is a subsidiary of French utility company Engie.

The $250 million solar farm, which London-based Lightsource BP started operating in 2021, produces about 450,000 megawatt-hours of solar power each year. Lightsource, which has an office in Austin, develops, finances and operates utility-scale renewable energy projects. Lightsource BP is a subsidiary of energy giant BP, whose North American headquarters is in Houston.

“This initiative represents a major step forward in aligning our operations with Daikin’s long-term sustainability goals,” Mike Knights, senior vice president of procurement at Daikin, said in a release.

Daikin aims to make its DTTP a net-zero factory by 2030.

The end of the solar tax credit is not the end of the solar industry. Photo by Kindel Media/Pexels

Texas still has its best solar days ahead of it, even as federal tax credit sunsets

Guest Column

If you follow energy policy, you already know that Congress repealed the 30% residential solar tax credit. This poses a significant challenge for continued growth in the market. It also provides an opportunity for the industry to grow in a smart, consumer-friendly way. That’s why in Texas, the story is what happens next: The state and the market are continuing to make going solar much simpler, better, and cheaper.

Policies are moving in the right direction. For example, starting this month, a bipartisan permitting reform takes effect that will cut red tape for home solar and batteries. It lets licensed third-party professionals review plans and perform inspections, requires agencies to post standardized rules and fees online, and allows homeowners to start work once those third-party approvals are submitted. It also shifts negligence liability to the third-party reviewer, thereby reducing municipal risk while accelerating safe, code-compliant installs. In plain English: fewer bottlenecks, faster installs, and lower “soft costs.”

As a result, Houston is already piloting the National Renewable Energy Lab’s free SolarAPP+ to auto-approve standard solar designs, which cuts roughly 12 days from typical timelines. Independent analyses estimate that these automated permitting rules could trim rooftop solar costs by thousands. In other words, even small, costless policy changes like this can save you almost as much money as the huge solar tax credit did, and these great reforms are happening all the time, and they make the process much more convenient and reliable.

While Texas is making solar simpler, it’s also helping consumers have a good experience when going solar. As of this month, Texas law now also requires solar salespeople to register with the Texas Department of Licensing and Regulation. The same bill standardizes contracts and provides for mandatory disclosures of upfront cost and financing terms. The whole solar industry benefits when customers have a good solar experience. Word of mouth is vital to keeping solar shining.

There's yet another pro-solar Texas law that's also going into effect this month: in addition to SB 1202 (streamlining solar permits) and SB 1036 (regulating solar sales tactics), the legislature is also supporting the dissemination of information about your options when going solar via SB 1697. You can read more about these three brand-new pro-solar state laws here.

The end of the solar tax credit is not the end of the solar industry. Far from it.

---

Dori Wolf is Senior Texas Program Associate for Solar United Neighbors, a vendor and neutral nonprofit with more than 15 years helping people go solar. Their free Solar Help Desk walks you through the details. Also check out their Go Solar Guide and Solar Owner’s Manual.

Solar United Neighbors also helps you find the best retail electricity plan through its partnership with Texas Power Guide.

Sunnova has been acquired. And its former CEO has launched a new startup. Photo via sunnova.com

Sunnova assets officially sold as founder launches new Houston energy startup

solar shift

Solaris Assets has completed its acquisition of the majority of Sunnova Energy International’s residential solar assets. Houston-based Sunnova filed for Chapter 11 bankruptcy this summer after piling up billions of dollars in debt.

Meanwhile, Sunnova founder and former CEO John Berger has launched a Houston-based home energy services startup, Otovo USA, which just received more than $4 million in seed funding.

Solaris now owns Sunnova’s residential solar services platform and its solar generation and storage portfolio, along with leases, loans and power purchase agreements. Sunnova’s operations are being shifted to SunStrong Management, an Austin-based asset manager for the renewable energy sector.

“By bringing together SunStrong’s asset management expertise with Sunnova’s nationally scaled customer base, we are creating a stronger, more capable leader in the solar industry,” Brendon Merkley, CEO of SunStrong, said in a news release. “Our priority is to maintain the highest levels of service for customers as we expand our footprint as a premier solar asset servicer.”

In June, Sunnova sold its new-home business to homebuilder Lennar for $15.2 million and sold certain assets to investment firm Atlas SP Partners for $15 million.

As of December, Sunnova’s debt totaled nearly $10.7 billion, Reuters reported. Sunnova faced numerous challenges in its quest to survive, including higher interest rates, the reduction of solar incentives in California, and a shakeup in federal subsidies for renewable energy.

Sunnova filed for Chapter 11 bankruptcy in June. A month later, a bankruptcy judge approved the court-supervised sale of Sunnova. Solaris’ acquisition of Sunnova closed Sept. 3.

As SunStrong absorbs the bulk of Sunnova’s assets, Berger — who quit in March as Sunnova’s CEO — has formed a new business. He’s now the founder and CEO of Otovo USA, a partner of European residential power company Otovo.

Otovo USA offers solar power systems, solar batteries, standby generators, EV chargers, electric-load managers, and other power generation and management systems. Otovo’s AI-supported offerings are now available in Texas; the company plans to expand nationwide.

Otovo USA raised its seed funding from the EIC Rose Rock Venture Fund, which invests in energy startups.

“Otovo USA is here to help the millions of Americans with home energy services that are fed up with the complexities of warranties, juggling multiple vendors, and long repair times,” Berger said. The startup, he added, “is bringing customers what they really need: reliable power and a single partner accountable for keeping it up and running. It’s your power, backed by ours.”

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Energy expert: What 2025 revealed about the evolution of Texas power

guest column

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Blackstone clears major step in acquisition of TXNM Energy

power deal

A settlement has been reached in a regulatory dispute over Blackstone Infrastructure’s pending acquisition of TXNM Energy, the parent company of Texas-New Mexico Power Co. , which provides electricity in the Houston area. The settlement still must be approved by the Public Utility Commission of Texas.

Aside from Public Utility Commission staffers, participants in the settlement include TXNM Energy, Texas cities served by Texas-New Mexico Power, the Texas Office of Public Utility Counsel, Texas Industrial Energy Consumers, Walmart and the Texas Energy Association for Marketers.

Texas-New Mexico Power, based in the Dallas-Fort Worth suburb of Lewisville, supplies electricity to more than 280,000 homes and businesses in Texas. Ten cities are in Texas-New Mexico Power’s Houston-area service territory:

  • Alvin
  • Angleton
  • Brazoria
  • Dickinson
  • Friendswood
  • La Marque
  • League City
  • Sweeny
  • Texas City
  • West Columbia

Under the terms of the settlement, Texas-New Mexico Power must:

  • Provide a $45.5 million rate credit to customers over 48 months, once the deal closes
  • Maintain a seven-member board of directors, including three unaffiliated directors as well as the company’s president and CEO
  • Embrace “robust” financial safeguards
  • Keep its headquarters within the utility’s Texas service territory
  • Avoid involuntary layoffs, as well as reductions of wages or benefits related to for-cause terminations or performance issues

The settlement also calls for Texas-New Mexico Power to retain its $4.2 billion five-year capital spending plan through 2029. The plan will help Texas-New Mexico Power cope with rising demand; peak demand increased about 66 percent from 2020 to 2024.

Citing the capital spending plan in testimony submitted to the Public Utility Commission, Sebastian Sherman, senior managing director of Blackstone Infrastructure, said Texas-New Mexico Power “needs the right support to modernize infrastructure, to strengthen the grid against wildfire and other risks, and to meet surging electricity demand in Texas.”

Blackstone Infrastructure, which has more than $64 billion in assets under management, agreed in August to buy TXNM Energy in a $11.5 billion deal.

Neal Walker, president of Texas-New Mexico Power, says the deal will help his company maintain a reliable, resilient grid, and offer “the financial resources necessary to thrive in this rapidly changing energy environment and meet the unprecedented future growth anticipated across Texas.”