fueling up

Houston company secures $100M to fund solar projects across New York

Catalyze’s proprietary suite of technology will bring solar development practices to Lancaster and Amherst areas. Photo courtesy of Catalyze

Houston’s Catalyze announced that it secured $100 million in financing from NY Green Bank to support a 79 megawatt portfolio of community distributed generation solar projects across the state of New York.

The loan is part of Catalyze’s increased presence in New York State with operational projects coming to Lancaster and Amherst. Catalyze’s proprietary suite of technology will bring solar development practices to the area.

Catalyze is a Houston-headquartered clean energy transition company that builds, owns, finances, and operates solar and battery storage systems. Catalyze is backed by leading energy investors EnCap Investments L.P. and Actis. NY Green Bank is a division of the New York State Energy Research and Development Authority.

The deal aims to advance New York State’s Climate Leadership and Community Protection Act goal of installing six gigawatts of distributed solar by 2025. This is part of a larger goal to 10 GW by 2030.

Catalyze owns two proprietary technologies in REenergyze, which is an origination-to-operations software integration platform to accelerate and scale nationwide adoption of commercial and industrial solar and storage, and SolarStrap. SolarStrap isa mounting technology to install rooftop panels.

“We are excited to leverage our extensive community solar expertise to ensure the success of NY Green Bank’s term loan supporting a community distributed generation (CDG) portfolio,” Jared Haines CEO of Catalyze, says in a news release. “CDG is one of the most effective means of making solar energy more accessible to low-to-moderate income communities, and we look forward to how this partnership will support both the goals of NY Green Bank and New York State.”

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News