fresh funding

Chevron launches $500M clean energy fund to target low carbon fuels, advanced materials

CTV has announced its newest fund to deploy capital to innovative clean energy tech. Photo via Getty Images

Chevron Technology Ventures has announced its latest fund raised to deploy capital into clean energy technology.

CTV's Future Energy Fund III has reportedly launched with $500 million — an increase from its second fund from 2021 that was valued at $400 million. The inaugural Future Energy Fund was established in 2018. Each fund has targeted separate technologies — from capture, emerging mobility, and energy storage in fund I to industrial decarbonization, emerging mobility, energy decentralization, and circular economy in fund II.

"Future Energy Fund III, launched in 2024, will continue to look forward in the areas of focus for the earlier two funds and aims to expand investment in the areas of novel low carbon fuels, advanced materials, and transforming carbon to higher-value products," reads Chevron's website describing the Future Energy Funds.

The first two funds have invested in over 30 companies and has more than 250 other investors supporting low-carbon innovations.

CTV, based in Houston, has strategic partnerships with organizations within the Houston innovation ecosystem, including Greentown Labs, Rice Alliance for Technology and Entrepreneurship, the Ion, The Cannon, and the HX Venture Fund.

"CTV engages a range of startup companies, investors, incubators and accelerators to access technology that can be used across Chevron now and in the future to enable us to operate more efficiently, to lower the carbon intensity of our operations and launch viable new businesses," reads the CTV site.

Founded in 1999, CTV invests in emerging energy technologies as well as incubating startups in its Catalyst Program. Last month, CTV added Cerebre, a software-as-a-service company that works with its customers to unlock and leverage data to tap into AI tools and digitization, to the Catalyst Program.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News