coming soon

Houston company breaks ground on North Texas solar project

A Houston company has started construction on a Waco-area solar farm. Photo courtesy of INEOS

A Houston-area company has broken ground on a new 310-megawatt solar project located in Bosque County, Texas.

League City-based INEOS Olefins & Polymers and Florida-based NextEra Energy Resources announced the groundbreaking on INEOS Hickerson Solar, which will reportedly save over 310,000 tons of CO2 every year.

“INEOS O&P USA is committed to leading the petrochemical community in adopting renewable energy solutions,” says CEO Mike Nagle in a news release. “This solar project is a crucial step in our global efforts to reduce the carbon footprint of INEOS businesses.”

The INEOS Hickerson Solar project will be constructed, owned and operated by a subsidiary of NextEra Energy Resources, and the output will aim to cover the net purchased electricity load for all 14 of INEOS O&P USA’s manufacturing, fractionation and storage facilities. Commercial operation is expected by December 2025.

The project is expected to produce 730,000 megawatt-hours of clean energy annually, which is the equivalent to the annual electricity use of over 68,000 homes. INEOS hopes this will significantly contribute to reducing greenhouse gas emissions by approximately 310,000 tons per year.

This follows the recently signed renewable power purchase agreement with NextEra Energy Resources, which is the world's largest generator of renewable energy from wind and sun.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News