Primergy says Gemini is the biggest solar-and-storage duo in the U.S. Photo via primergysolar.com

A portfolio company of Quinbrook Infrastructure Partners, an energy-focused investment manager with U.S. offices in Houston and New York, has flipped the switch on its solar power and battery energy storage system in Nevada’s Mojave Desert.

The portfolio company, Oakland, California-based Primergy Solar, says its Gemini Solar + Storage project near Las Vegas is now fully operational.

Gemini’s 1.8 million solar panels can generate up to 690 megawatts of power, enough to meet 10 percent of Nevada’s peak power demand. The panels are paired with 380 megawatts of four-hour battery storage.

“Gemini creates a blueprint for holistic and innovative clean energy development at mega scale, and we are proud to have brought this milestone project to life and to have delivered so many positive impacts across job creation, environmental stewardship, and local community engagement,” David Scaysbrook, co-founder and managing partner of Quinbrook, says in a news release.

Primergy says Gemini is the biggest solar-and-storage duo in the U.S.

“Achieving full commercial operations marks a significant technical and financial milestone for our team. We successfully navigated challenging supply chain and inflation issues through proactive planning and collaboration to bring this project online,” Primergy CEO Ty Daul says.

Primergy develops, owns, and operates utility-scale solar power and battery storage projects across the U.S. It manages projects in several U.S. energy markets, including the one served by the Electric Reliability Council of Texas (ERCOT).

As Gemini was taking shape, Primergy and Quinbrook closed on $1.9 billion in debt and tax equity financing for construction and development.

In October 2022, APG, the largest pension asset manager in the Netherlands, acquired a 49 percent ownership stake in Gemini on behalf of pension fund client ABP.

In April 2024, the remaining 51 percent share of the project was acquired by the $600 million Quinbrook Valley of Fire Fund. Funds associated with Blackstone Strategic Partners and Ares Management Infrastructure Secondaries were the lead investors.

EnCap is ready to deploy growth capital to advance the energy transition. Photo via Getty Images

Houston energy transition growth capital firm closes $1.5B fund

A Houston-based energy transition-focused growth capital firm announced the close of its second fund to the tune of $1.5 billion.

EnCap Energy Transition's Fund II, or EETF II, was created to invest in solutions to decarbonize the power industry, and invest in low carbon fuels and carbon management.This second energy transition fund follows EnCap Energy Transition Fund I, a $1.2 billion fund that deployed capital to seven material portfolio company investments and four fund realizations with Broad Reach Power, Jupiter Power, Triple Oak, and Paloma Solar & Wind.

Previously, the company made investment commitments to five portfolio companies through EETF II, including Bildmore Renewables, Linea Energy, Parliament Solar, Power Transitions, and Arbor Renewable Gas. With the Bildmore arm, the EnCap fund aims to fuel development of renewable energy projects that can’t attract traditional tax equity financing.

EnCap expects to have 8-10 portfolio companies in EETF II in total.

"The EnCap Energy Transition team is proud to have raised a sizeable pool of capital to continue to invest in the opportunity created by the shift to a lower-carbon energy system,” EnCap Energy Transition Managing Partner Jim Hughes says in a news release.

“We greatly appreciate the strong support from our existing investor base and are pleased to have added a number of new, high-quality investors, both domestically and internationally," he continues. "Since our inception in 2019, we now manage approximately $2.7 billion of capital commitments to invest in decarbonization and are excited for the opportunities ahead of us."

Recently,EnCap was part of a deal in the battery energy storage business carrying an equity value of more than $1 billion. Engie purchased the majority of a startup . Broad Reach’s battery storage business from EnCap Energy Transition Fund I. Broad Reach launched in 2019 with backing from EnCap.

“We continue to believe all sources of energy are needed to support the world’s growing energy needs and that our Energy Transition Team will build off the significant success achieved to date,” said EnCap Managing Partner Jason DeLorenzo in a news release.

———

This article originally ran on InnovationMap.

The Texas projects are set to come online in 2024. Photo via Schneider Electric

Schneider Electric to invest in Texas clean energy projects with IRA tax credit transfer

shining on solar

Energy management and automation company Schneider Electric is investing in a Texas portfolio of solar and battery storage systems developed, built, and operated by Houston-based ENGIE North America.

The Texas projects are set to come online in 2024. France-based Schneider says the projects will put the company closer to reaching its goal of 100 percent renewable energy in the U.S. and Canada by 2030.

The Schneider investment comes in the form of tax credit transfers enabled by the federal Inflation Reduction Act. A Schneider news release didn’t put a price tag on the investment and didn’t name the Texas projects.

Schneider explains that the federal law enables the transfer of certain federal tax credits from renewable energy, clean energy manufacturing, battery storage and other clean energy projects. These transfers are an alternative to traditional tax equity deals.

“This collaboration with Schneider signals a real step forward in accelerating the net-zero transition,” Dave Carroll, chief renewables officer and senior vice president at ENGIE North America, says in the news release.

Carroll adds that the solar-and-storage portfolio and the tax credit transfers “support the continued growth of renewable energy and storage options in the U.S., which brings economic opportunities to an expanding set of communities alongside the transition to a lower-carbon grid.”

Last month, ENGIE said it had recently wrapped up more than $1 billion in tax equity financing from banking heavyweights BNP Paribas, Goldman Sachs, and J.P. Morgan Chase. The financing went toward 1.3 gigawatts’ worth of clean energy projects.

Bildmore expects to invest in 10 to 15 third-party, utility-scale clean energy projects each year. Photo via Bildmore.com

Houston renewables developer launches platform to invest in energy transition projects

new in Hou

Houston-based EnCap Energy Transition Fund has launched a platform that will take minority equity stakes in battery storage systems, solar energy systems, and other energy transition projects in the U.S.

With its new Bildmore arm, the EnCap fund aims to fuel development of renewable energy projects that can’t attract traditional tax equity financing. Bildmore expects to invest in 10 to 15 third-party, utility-scale clean energy projects each year.

Bildmore seeks to capitalize on clean energy incentives tucked into the federal Inflation Reduction Act of 2022, including the ability of projects to sell tax credits. Specifically, the platform says it hopes to address “a chronic short supply” of tax equity deals due to heightened demand triggered by the inflation reduction law.

EnCap is no stranger to utility-scale solar power and battery storage systems. The fund backs Houston-based Broad Reach Power and Austin-based Jupiter Power, two of the largest players in the U.S. market for battery storage.

David Haug leads Bildmore as its CEO. He is co-founder and senior managing director of Houston-based Arctas Capital Group, which invests in energy infrastructure projects.

“Bildmore will focus on … battery storage and solar projects, particularly those which have chosen to leave all or part of their energy output available for ‘merchant’ sale rather than be sold under long-term contracts,” Haug says in a news release. “We want to help those development teams lacking the deep balance sheets typically required by tax equity providers.”

EnCap Investments, sponsor of the EnCap Energy Transition Fund, manages capital from more than 350 U.S. and international investors. Since its founding in 2019, EnCap Investments has raised 25 institutional investment funds totaling about $41 billion to support independent energy businesses in the U.S.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”

Houston expert: The role of U.S. LNG in global energy markets

guest column

The debate over U.S. Liquefied Natural Gas (LNG) exports is too often framed in misleading, oversimplified terms. The reality is clear: LNG is not just a temporary fix or a bridge fuel, it is a fundamental pillar of global energy security and economic stability. U.S. LNG is already reducing coal use in Asia, strengthening Europe’s energy balance, and driving economic growth at home. Turning away from LNG exports now would be a shortsighted mistake, undermining both U.S. economic interests and global energy security.

Ken Medlock, Senior Director of the Baker Institute’s Center for Energy Studies, provides a fact-based assessment of the U.S. LNG exports that cuts through the noise. His analysis, consistent with McKinsey work, confirms that U.S. LNG is essential to balancing global energy markets for the decades ahead. While infrastructure challenges and environmental concerns exist, the benefits far outweigh the drawbacks. If the U.S. fails to embrace its leadership in LNG, we risk giving up our position to competitors, weakening our energy resilience, and damaging national security.

LNG Export Licenses: Options, Not Guarantees

A common but deeply flawed argument against expanding LNG exports is the assumption that granting licenses guarantees unlimited exports. This is simply incorrect. As Medlock puts it, “Licenses are options, not guarantees. Projects do not move forward if they are unable to find commercial footing.”

This is critical: government approvals do not dictate market outcomes. LNG projects must navigate economic viability, infrastructure feasibility, and global demand before becoming operational. This reality should dispel fears that expanded licensing will automatically lead to an uncontrolled surge in exports or domestic price spikes. The market, not government restrictions, should determine which projects succeed.

Canada’s Role in U.S. Gas Markets

The U.S. LNG debate often overlooks an important factor: pipeline imports from Canada. The U.S. and Canadian markets are deeply intertwined, yet critics often ignore this reality. Medlock highlights that “the importance to domestic supply-demand balance of our neighbors to the north and south cannot be overstated.”

Infrastructure Constraints and Price Volatility

One of the most counterproductive policies the U.S. could adopt is restricting LNG infrastructure development. Ironically, such restrictions would not only hinder exports but also drive up domestic energy prices. Medlock’s report explains this paradox: “Constraints that either raise development costs or limit the ability to develop infrastructure tend to make domestic supply less elastic. Ironically, this has the impact of limiting exports and raising domestic prices.”

The takeaway is straightforward: blocking infrastructure development is a self-inflicted wound. It stifles market efficiency, raises costs for American consumers, and weakens U.S. competitiveness in global energy markets. McKinsey research confirms that well-planned infrastructure investments lead to greater price stability and a more resilient energy sector. The U.S. should be accelerating, not hindering, these investments.

Short-Run vs. Long-Run Impacts on Domestic Prices

Critics of LNG exports often confuse short-term price fluctuations with long-term market trends. This is a mistake. Medlock underscores that “analysis that claims overly negative domestic price impacts due to exports tend to miss the distinction between short-run and long-run elasticity.”

Short-term price shifts are inevitable, driven by seasonal demand and supply disruptions. But long-term trends tell a different story: as infrastructure improves and production expands, markets adjust, and price impacts moderate. McKinsey analysis suggests supply elasticity increases as producers respond to price signals. Policy decisions should be grounded in this broader economic reality, not reactionary fears about temporary price movements.

Assessing the Emissions Debate

The argument that restricting U.S. LNG exports will lower global emissions is fundamentally flawed. In fact, the opposite is true. Medlock warns against “engineering scenarios that violate basic economic principles to induce particular impacts.” He emphasizes that evaluating emissions must be done holistically. “Constraining U.S. LNG exports will likely mean Asian countries will continue to turn to coal for power system balance,” a move that would significantly increase global emissions.

McKinsey’s research reinforces that, on a lifecycle basis, U.S. LNG produces fewer emissions than coal. That said, there is room for improvement, and efforts should focus on minimizing methane leakage and optimizing gas production efficiency.

However, the broader point remains: restricting LNG on environmental grounds ignores the global energy trade-offs at play. A rational approach would address emissions concerns while still recognizing the role of LNG in the global energy system.

The DOE’s Commonwealth LNG Authorization

The Department of Energy’s recent conditional approval of the Commonwealth LNG project is a step in the right direction. It signals that economic growth, energy security, and market demand remain key considerations in regulatory decisions. Medlock’s analysis makes it clear that LNG exports will be driven by market forces, and McKinsey’s projections show that global demand for flexible, reliable LNG is only increasing.

The U.S. should not limit itself with restrictive policies when the rest of the world is demanding more LNG. This is an opportunity to strengthen our position as a global energy leader, create jobs, and ensure long-term energy security.

Conclusion

The U.S. LNG debate must move beyond fear-driven narratives and focus on reality. The facts are clear: LNG exports strengthen energy security, drive economic growth, and reduce global emissions by displacing coal.

Instead of restrictive policies that limit LNG’s potential, the U.S. should focus on expanding infrastructure, maintaining market flexibility, and supporting innovation to further reduce emissions. The energy transition will be shaped by market realities, not unrealistic expectations.

The U.S. has an opportunity to lead. But leadership requires embracing economic logic, investing in infrastructure, and ensuring our policies are guided by facts, not political expediency. LNG is a critical part of the global energy landscape, and it’s time to recognize its long-term strategic value.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.