shining on solar

Schneider Electric to invest in Texas clean energy projects with IRA tax credit transfer

The Texas projects are set to come online in 2024. Photo via Schneider Electric

Energy management and automation company Schneider Electric is investing in a Texas portfolio of solar and battery storage systems developed, built, and operated by Houston-based ENGIE North America.

The Texas projects are set to come online in 2024. France-based Schneider says the projects will put the company closer to reaching its goal of 100 percent renewable energy in the U.S. and Canada by 2030.

The Schneider investment comes in the form of tax credit transfers enabled by the federal Inflation Reduction Act. A Schneider news release didn’t put a price tag on the investment and didn’t name the Texas projects.

Schneider explains that the federal law enables the transfer of certain federal tax credits from renewable energy, clean energy manufacturing, battery storage and other clean energy projects. These transfers are an alternative to traditional tax equity deals.

“This collaboration with Schneider signals a real step forward in accelerating the net-zero transition,” Dave Carroll, chief renewables officer and senior vice president at ENGIE North America, says in the news release.

Carroll adds that the solar-and-storage portfolio and the tax credit transfers “support the continued growth of renewable energy and storage options in the U.S., which brings economic opportunities to an expanding set of communities alongside the transition to a lower-carbon grid.”

Last month, ENGIE said it had recently wrapped up more than $1 billion in tax equity financing from banking heavyweights BNP Paribas, Goldman Sachs, and J.P. Morgan Chase. The financing went toward 1.3 gigawatts’ worth of clean energy projects.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News