report

Eyeing demand growth, ERCOT calls for energy investments across Texas

ERCOT now estimates an extra 40,000 megawatts of growth in demand for electricity by 2030 compared with last year’s outlook. Photo via Getty Images

With the Electric Reliability Council of Texas forecasting a big spike in demand for electricity over the next five to seven years, the operator of Texas’ massive power grid is embracing changes that it says will yield a “tremendous opportunity” for energy investments across the state.

The council, known as ERCOT, now estimates an extra 40,000 megawatts of growth in demand for electricity by 2030 compared with last year’s outlook. According to ERCOT data, 40,000 megawatts of electricity would power roughly 8 million Texas homes during peak demand.

ERCOT has been under intense scrutiny in the wake of recent summertime and wintertime debacles involving power emergencies or outages. The organization manages 90 percent of Texas’ power supply.

“As a result of Texas’ continued strong economic growth, new load is being added to the ERCOT system faster and in greater amounts than ever before,” Pablo Vegas, president and CEO of ERCOT, says in a news release. “As we develop and implement the tools provided by the prior two [legislative sessions], ERCOT is positioned to better plan for and meet the needs of our incredibly fast-growing state.”

Meeting the increased demand will create opportunities for energy investments in Texas, says ERCOT. These opportunities will undoubtedly lie in traditional energy production as well as in renewable energy segments such as solar, wind, and “green” hydrogen.

Some of the opportunities might be financed, at least in part, by the newly established Texas Energy Fund. The fund, which has been allotted $5 billion for 2025-26, will provide loans and grants for construction, maintenance, modernization, and operation of power-generating facilities in Texas.

ERCOT is also working with partners to develop tools aimed at improving grid reliability and market efficiency.

ERCOT says changes in its operations that’ll be required to fulfill heightened demand for power will position the nonprofit organization “as a significant component of the economic engine driving the national economy.”

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News