Data centers, EVs, and storms put the Texas grid to the test. Photo courtesy UH.

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

A new white paper from the University of Houston cautions that Texas faces a potential electricity shortfall of up to 40 gigawatts annually by 2035 if the grid doesn’t expand. Photo courtesy UH.

New UH white paper details Texas grid's shortfalls

grid warning

Two University of Houston researchers are issuing a warning about the Texas power grid: Its current infrastructure falls short of what’s needed to keep pace with rising demand for electricity.

The warning comes in a new whitepaper authored by Ramanan Krishnamoorti, vice president of energy and innovation at UH, and researcher Aparajita Datta, a Ph.D candidate at UH.

“As data centers pop up around the Lone Star State, electric vehicles become more commonplace, industries adopt decarbonization technologies, demographics change, and temperatures rise statewide, electricity needs in Texas could double by 2035,” a UH news release says. “If electrification continues to grow unconstrained, demand could even quadruple over the next decade.”

Without significant upgrades to power plants and supporting infrastructure, Texas could see electricity shortages, rising power costs and more stress on the state’s grid in coming years, the researchers say. The Electric Reliability Council of Texas (ERCOT) grid serves 90 percent of the state.

“Texas, like much of the nation, has fallen behind on infrastructure updates, and the state’s growing population, diversified economy and frequent severe weather events are increasing the strain on the grid,” Datta says. “Texas must improve its grid to ensure people in the state have access to reliable, affordable, and resilient energy systems so we can preserve and grow the quality of life in the state.”

The whitepaper’s authors caution that Texas faces a potential electricity shortfall of up to 40 gigawatts annually by 2035 if the grid doesn’t expand, with a more probable shortfall of about 27 gigawatts. And they allude to a repeat of the massive power outages in Texas during Winter Storm Uri in February 2021.

One gigawatt of electricity can power an estimated 750,000 homes in Texas, according to the Texas Solar + Storage Association.

The state’s current energy mix includes 40 percent natural gas, 29 percent wind, 12 percent coal, 10 percent nuclear and eight percent solar, the authors say.

Despite surging demand, 360 gigawatts of solar and battery storage projects are stuck in ERCOT’s queue, according to the researchers, and new natural gas plants have been delayed or withdrawn due to supply chain challenges, bureaucratic delays, policy uncertainties and shifting financial incentives.

Senate Bill 6, recently signed by Gov. Greg Abbott, calls for demand-response mandates, clearer rate structures and new load management requirements for big users of power like data centers and AI hubs.

“While these provisions are a step in the right direction,” says Datta, “Texas needs more responsive and prompt policy action to secure grid reliability, address the geographic mismatch between electricity demand and supply centers, and maintain the state’s global leadership in energy.”

How has the Texas grid improved since Winter Storm Uri in 2021? Getty Images

Being prepared: Has the Texas grid been adequately winterized?

Winter in Texas

Houstonians may feel anxious as the city and state brace for additional freezing temperatures this winter. Every year since 2021’s Winter Storm Uri, Texans wonder whether the grid will keep them safe in the face of another winter weather event. The record-breaking cold temperatures of Uri exposed a crucial vulnerability in the state’s power and water infrastructure.

According to ERCOT’s 6-day supply and demand forecast from January 3, 2025, it expected plenty of generation capacity to meet the needs of Texans during the most recent period of colder weather. So why did the grid fail so spectacularly in 2021?

  1. Demand for electricity surged as millions of people tried to heat their homes.
  2. ERCOT was simply not prepared despite previous winter storms of similar intensity to offer lessons in similarities.
  3. The state was highly dependent on un-winterized natural gas power plants for electricity.
  4. The Texas grid is isolated from other states.
  5. Failures of communication and coordination between ERCOT, state officials, utility companies, gas suppliers, electricity providers, and power plants contributed to the devastating outages.

The domino effect resulted in power outages for millions of Texans, the deaths of hundreds of Texans, billions of dollars in damages, with some households going nearly a week without heat, power, and water. This catastrophe highlighted the need for swift and sweeping upgrades and protections against future extreme weather events.

Texas State Legislature Responds

Texas lawmakers proactively introduced and passed legislation aimed at upgrading the state’s power infrastructure and preventing repeated failures within weeks of the storm. Senate Bill 3 (SB3) measures included:

  • Requirements to weatherize gas supply chain and pipeline facilities that sell electric energy within ERCOT.
  • The ability to impose penalties of up to $1 million for violation of these requirements.
  • Requirement for ERCOT to procure new power sources to ensure grid reliability during extreme heat and extreme cold.
  • Designation of specific natural gas facilities that are critical for power delivery during energy emergencies.
  • Development of an alert system that is to be activated when supply may not be able to meet demand.
  • Requirement for the Public Utility Commission of Texas, or PUCT, to establish an emergency wholesale electricity pricing program.

Texas Weatherization by Natural Gas Plants

In a Railroad Commission of Texas document published May 2024 and geared to gas supply chain and pipeline facilities, dozens of solutions were outlined with weatherization best practices and approaches in an effort to prevent another climate-affected crisis from severe winter weather.

Some solutions included:

  • Installation of insulation on critical components of a facility.
  • Construction of permanent or temporary windbreaks, housing, or barriers around critical equipment to reduce the impact of windchill.
  • Guidelines for the removal of ice and snow from critical equipment.
  • Instructions for the use of temporary heat systems on localized freezing problems like heating blankets, catalytic heaters, or fuel line heaters.

According to Daniel Cohan, professor of environmental engineering at Rice University, power plants across Texas have installed hundreds of millions of dollars worth of weatherization upgrades to their facilities. In ERCOT’s January 2022 winterization report, it stated that 321 out of 324 electricity generation units and transmission facilities fully passed the new regulations.

Is the Texas Grid Adequately Winterized?

Utilities, power generators, ERCOT, and the PUCT have all made changes to their operations and facilities since 2021 to be better prepared for extreme winter weather. Are these changes enough? Has the Texas grid officially been winterized?

This season, as winter weather tests Texans, residents may potentially experience localized outages. When tree branches cannot support the weight of the ice, they can snap and knock out power lines to neighborhoods across the state. In the instance of a downed power line, we must rely on regional utilities to act quickly to restore power.

The specific legislation enacted by the Texas state government in response to the 2021 disaster addressed to the relevant parties ensures that they have done their part to winterize the Texas grid.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article first appeared on our sister site, InnovationMap.com.

While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

Reshaping the Texas grid: The impact of EVs, AI, renewables, and extreme weather

guest column

Did you catch those images of idle generators that CenterPoint had on standby during Hurricane Beryl? With over 2 million people in the Houston area left in the dark, many were wondering, "if the generators are ready, why didn’t they get used?" It seems like power outages are becoming just as common as the severe storms themselves.

But as Ken Medlock, Senior Director of the Baker Institute Center for Energy Studies (CES) explains, it's not a simple fix. The outages during Hurricane Beryl were different from what we saw during Winter Storm Uri. This time, with so many poles and wires down, those generators couldn’t be put to use. It’s a reminder that each storm brings its own set of challenges, and there’s no one-size-fits-all solution when it comes to keeping the lights on. While extreme weather is one of the leading threats to our electric grid, it's certainly not the only one adding strain on our power infrastructure.

The rapid rise of artificial intelligence (AI) and electric vehicles (EVs) is transforming the way we live, work, and move. Beneath the surface of these technological marvels lies a challenge that could define the future of our energy infrastructure: they all depend on our electrical grid. As AI-powered data centers and a growing fleet of EVs demand more power than ever before, our grid—already under pressure from extreme weather events and an increasing reliance on renewable energy—faces a critical test. The question goes beyond whether our grid can keep up, but rather focuses on how we can ensure it evolves to support the innovations of tomorrow without compromising reliability today. The intersection of these emerging technologies with our aging energy infrastructure poses a dilemma that policymakers, industry leaders, and consumers must address.

Julie Cohn, Nonresident Fellow at the Center for Energy Studies at the Baker Institute for Public Policy, presents several key findings and recommendations to address concerns about the reliability of the Texas energy grid in her Energy Insight. She suggests there’s at least six developments unfolding that will affect the reliability of the Texas Interconnected System, operated by the Electric Reliability Council of Texas (ERCOT) and the regional distribution networks operated by regulated utilities.

Let’s dig deeper into some of these issues:

AI

AI requires substantial computational power, particularly in data centers that house servers processing vast amounts of data. These data centers consume large amounts of electricity, putting additional strain on the grid.

According to McKinsey & Company, a single hyperscale data center can consume as much electricity as 80,000 homes combined. In 2022, data centers consumed about 200 terawatt-hours (TWh), close to 4 percent, of the total electricity used in the United States and approximately 460 TWh globally. That’s nearly the consumption of the entire State of Texas, which consumed approximately 475.4 TWh of electricity in the same year. However, this percentage is expected to increase significantly as demand for data processing and storage continues to grow. In 2026, data centers are expected to account for 6 percent, almost 260 TWh, of total electricity demand in the U.S.

EVs

According to the Texas Department of Motor Vehicles, approximately 170,000 EVs have been registered across the state of Texas as of 2023, with Texas receiving $408 million in funding to expand its EV charging network. As Cohn suggests, a central question remains: Where will these emerging economic drivers for Texas, such as EVs and AI, obtain their electric power?

EVs draw power from the grid every time they’re plugged in to charge. This may come as a shock to some, but “the thing that’s recharging EV batteries in ERCOT right now, is natural gas,” says Medlock. And as McKinsey & Company explains, the impact of switching to EVs on reducing greenhouse gas (GHG) emissions will largely depend on how much GHG is produced by the electricity used to charge them. This adds a layer of complexity as regulators look to decarbonize the power sector.

Depending on the charger, a single EV fast charger can pull anywhere from 50 kW to 350 kW of electricity per hour. Now, factor in the constant energy drain from data centers, our growing population using power for homes and businesses, and then account for the sudden impact of severe environmental events—which have increased in frequency and intensity—and it’s clear: Houston… we have a problem.

The Weather Wildcard

Texas is gearing up for its 2025 legislative session on January 14. The state's electricity grid once again stands at the forefront of political discussions. The question is not just whether our power will stay on during the next winter storm or scorching summer heatwave, but whether our approach to grid management is sustainable in the face of mounting challenges. The events of recent years, from Winter Storm Uri to unprecedented heatwaves, have exposed significant vulnerabilities in the Texas electricity grid, and while legislative measures have been taken, they have been largely patchwork solutions.

Winter Storm Uri in 2021 was a wake-up call, but it wasn’t the first or last extreme weather event to test the Texas grid. With deep freezes, scorching summers, and unpredictable storms becoming the norm rather than the exception, it is clear that the grid’s current state is not capable of withstanding these extremes. The measures passed in 2021 and 2023 were steps in the right direction, but they were reactive, not proactive. They focused on strengthening the grid against cold weather, yet extreme heat, a more consistent challenge in Texas, remains a less-addressed threat. The upcoming legislative session must prioritize comprehensive climate resilience strategies that go beyond cold weather prep.

“The planners for the Texas grid have important questions to address regarding anticipated weather extremes: Will there be enough energy? Will power be available when and where it is needed? Is the state prepared for extreme weather events? Are regional distribution utilities prepared for extreme weather events? Texas is not alone in facing these challenges as other states have likewise experienced extremely hot and dry summers, wildfires, polar vortexes, and other weather conditions that have tested their regional power systems,” writes Cohn.

Renewable Energy and Transmission

Texas leads the nation in wind and solar capacity (Map: Energy, Environment, and Policy in the US), however the complexity lies in getting that energy from where it’s produced to where it’s needed. Transmission lines are feeling the pressure, and the grid is struggling to keep pace with the rapid expansion of renewables. In 2005, the Competitive Renewable Energy Zones (CREZ) initiative showed that state intervention could significantly accelerate grid expansion. With renewables continuing to grow, the big question now is whether the state will step up again, or risk allowing progress to stall due to the inadequacy of the infrastructure in place. The legislature has a choice to make: take the lead in this energy transition or face the consequences of not keeping up with the pace of change.

Conclusion

The electrical grid continues to face serious challenges, especially as demand is expected to rise. There is hope, however, as regulators are fully aware of the strain. While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

As Cohn puts it, “In the end, successful resolution of the various issues will carry significant benefits for existing Texas industrial, commercial, and residential consumers and have implications for the longer-term economic attractiveness of Texas. Suffice it to say, eyes will be, and should be, on the Texas legislature in the coming session.”

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on September 11, 2024.

The lawsuits are Oklahoma's first against natural gas operators over earnings during the 2021 Winter Storm Uri. Photo by Lynn in Midtown via CultureMap

Oklahoma sues 2 Texas natural gas companies over price spikes during 2021 winter storm

taking action

Two Texas-based natural gas companies are being sued by Oklahoma, which alleges they fraudulently reduced gas supplies to send prices soaring during Winter Storm Uri, making huge profits while thousands shivered across the state.

The lawsuits are Oklahoma's first against natural gas operators over earnings during the 2021 storm. The suits were filed against Dallas-based ET Gathering & Processing, which acquired Enable Midstream Partners in 2021, and Houston-based Symmetry Energy Solutions.

Both lawsuits seek actual and punitive damages, as well as a share of any profits that resulted from wrongdoing. Oklahoma's Republican attorney general, Gentner Drummond, said his office intends to pursue additional litigation against other companies that may have engaged in market manipulation.

“I believe the level of fraud perpetrated on Oklahomans during Winter Storm Uri is both staggering and unconscionable,” Drummond said in a statement. “While many companies conducted themselves above board during that trying time, our analysis indicates that some bad actors reaped billions of dollars in ill-gotten gains."

A Symmetry spokesperson said in a statement that the company "adamantly denies the unfounded allegations in the lawsuit, which it will vigorously defend.” A message seeking comment left with ET was not immediately returned. The lawsuits were filed in Osage County, Oklahoma.

The devastating storm sent temperatures plummeting across the country and left millions of people without power.

Kansas Attorney General Kris Kobach filed a similar lawsuit in federal court in December against a natural gas marketer operating in that state. In Texas, which was also hit hard by the deadly storm, the electric utility Griddy Energy reached a settlement with state regulators over crushing electric bills its customers received.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investment bank opens energy-focused office in Houston

new to hou

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

Houston cleantech startup Helix Earth lands $1.2M NSF grant

federal funding

Renewable equipment manufacturer Helix Earth Technologies is one of three Houston-based companies to secure federal funding through the Small Business Innovation Research (SBIR) Phase II grant program in recent months.

The company—which was founded based on NASA technology, spun out of Rice University and has been incubated at Greentown Labs—has received approximately $1.2 million from the National Science Foundation to develop its high-efficiency retrofit dehumidification systems that aim to reduce the energy consumption of commercial AC units. The company reports that its technology has the potential to cut AC energy use by up to 50 percent.

"This award validates our vision and propels our impact forward with valuable research funding and the prestige of the NSF stamp of approval," Rawand Rasheed, Helix CEO and founder, shared in a LinkedIn post. "This award is a reflection our exceptional team's grit, expertise, and collaborative spirit ... This is just the beginning as we continue pushing for a sustainable future."

Two other Houston-area companies also landed $1.2 million in NSF SBIR Phase II funding during the same period:

  • Resilitix Intelligence, a disaster AI startup that was founded shortly after Hurricane Harvey, that works to "reduce the human and economic toll of disasters" by providing local and state organizations and emergency response teams with near-real-time, AI-driven insights to improve response speed, save lives and accelerate recovery
  • Conroe-based Fluxworks Inc., founded in 2021 at Texas A&M, which provides magnetic gear technology for the space industry that has the potential to significantly enhance in-space manufacturing and unlock new capabilities for industries by allowing advanced research and manufacturing in microgravity

The three grants officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on September 30, 2025, and has stalled since the recent government shutdown. Government agencies cannot issue new grants until Congress agrees on a path forward. According to SBIR.gov, "if no further action is taken by Congress, federal agencies may not be able to award funding under SBIR/STTR programs and SBIR/STTR solicitations may be delayed, cancelled, or rescinded."

Mars Materials makes breakthrough in clean carbon fiber production

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.