The projects are among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management. Photo courtesy of University of Houston

Three projects from the University of Houston have been awarded funds from the U.S. Department of Energy for research on decarbonization and emissions.

The projects are among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management (FECM).

“These three projects show the relevance and quality of the research at UH and our commitment to making a meaningful impact by addressing society’s needs and challenges by doing critical work that impacts the real world,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a statement. “The success of these project could attract investment, create jobs, produce clean energy, save costs, reduce carbon emissions, and benefit not only the greater Houston area, but the Gulf Coast and beyond.”

The projects were selected under FECM’s University Training and Research program, which aims to support "research and development opportunities for traditionally underrepresented communities and tap into the innovative and diverse thinking of student researchers," according to an announcement from the DOE.

Here are the projects from UH and their funding amounts:

A Comprehensive Roadmap for Repurposing Offshore Infrastructure for Clean Energy Projects in the Gulf of Mexico, $749,992 — Led by Ram Seetharam, UH Energy program officer, this project looks at ways to prolong the life of platforms, wells and pipelines in the Gulf Coast and will create a plan "covering technical, social, and regulatory aspects, as well as available resources," according to UH.

Houston Hydrogen Transportation Pilot, $750,000— Led by Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen, and managed by Joe Powell, this project will demonstrate the potential for a hydrogen refueling pilot in Houston. The first phase will create a system to optimize hydrogen and the second will create a workforce training network. The project is in collaboration with Prairie View A&M University.

Synergizing Minority-Serving Institution Partnerships for Carbon-Negative Geologic Hydrogen Production, $1.5 million — This project is in collaboration with Stanford Doerr School of Sustainability and Texas Tech. The project will create a visiting scholars program for students from UH and TTU, who will spend one month per year at Stanford for three years. While in the program, students will focus on creating carbon-negative hydrogen from rocks beneath the Earth's surface. Kyung Jae Lee, associate professor in the Department of Petroleum Engineering at UH, is working alongside colleagues at TTU and Stanford on this project.

Other projects in the group come from the University of Texas at El Paso, New Mexico Institute of Mining and Technology, Tennessee State University, North Carolina Agricultural and Technical State University, Duke University and more.

Last year the DOE also awarded $2 million to Harris and Montgomery counties for projects that improve energy efficiency and infrastructure in the region. Click here to read about those projects.

The DOE also granted more than $10 million in funding to four carbon capture projects with ties to Houston last summer.

———

This article originally ran on InnovationMap.

Two UH-affiliated organizations scored DOE funding for advancing superconductivity projects. Photo courtesy of UH

University of Houston pockets $5M in DOE funding for superconductivity projects

taking on tape

A program within the U.S. Department of Energy has deployed $10 million into three projects working on superconducting tape innovation. Two of these projects are based on research from the University of Houston.

The DOE's Advanced Research Projects Agency-Energy, or ARPA-E, issued the funding through its Novel Superconducting Technologies for Conductors Exploratory Topic. Superconductivity — found only in certain materials — is a focus point for the DOE because it allows for the conduction of direct electric current without resistance or energy loss.

The demand for HTS, or high-temperature superconducting, tapes has risen as the country moves toward net-zero energy, driving up the cost of the materials, which are manufactured outside of the U.S. Here's where the DOE wants to help.

“If we can improve superconductors and manufacture them here in the United States, we can ultimately speed up the energy transition through enabling cost savings, faster production, and improved capability,” ARPA-E Director Evelyn N. Wang says in the DOE press release. “The teams [selected] will all pursue ARPA-E’s mission to lower emissions, bolster national security, increase energy independence and improve energy efficiency through their critical research.”

Selva Research Group, a team from UH focused on scaling HTS tape production and led by Venkat Selvamanickam, M.D. Anderson Chair Professor of Mechanical Engineering and director of the Advanced Manufacturing Institute, received a $2 million grant.

“Even though our superconducting tape is three times better than today’s industry products, for us to be able to take it to full-scale commercialization, we need to produce it faster and at a lower cost while maintaining its high quality,” Selvamanickam says in a UH press release. “This funding is to address this challenge and it’s an important step forward towards commercialization of our technology.”

The other UH-based team is MetOx Technologies, which secured $3 million in funding to support the advancement of its proprietary manufacturing technology for its HTS wire. Co-founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors, who also serves as the company’s chief science officer, MetOx plans to open its new manufacturing facility by the end of the year.

“This ARPA-E funding not only allows MetOx to advance its HTS wire fabrication process that I developed at UH, but also signifies the DOE’s recognition that MetOx is important,” Ignatiev says in the release. “The cost-effective HTS product that MetOx is developing at scale is critical to the national and global application of HTS for the world’s energy needs.”

The ARPA-E funding emphasizes the need for advancement of HTS tape innovation, and UH-affiliated groups receiving two of the three grants indicates the school is a leader in the space — something UH Vice President for Energy and Innovation Ramanan Krishnamoorti is proud of.

“These awards recognize the relevance and quality of the research at UH and our commitment to making a meaningful impact by addressing society’s needs and challenges by transitioning innovations out of research labs and into the real world,” Krishnamoorti says in the release.

High-temperature superconducting tapes have a high potential in the energy transition. Photo courtesy of UH

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Photo via UH.edu

University of Houston names first group of Chevron-backed fellows

meet the chosen ones

The University of Houston has named eight graduate students to its first-ever cohort of UH-Chevron Energy Graduate Fellows.

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Their work focuses on energy-related research in fields ranging from public policy to geophysics and math. The fellowship is funded by Chevron.

“The UH-Chevron Energy Fellowship program is an exciting opportunity for our graduate students to research the many critical areas that impact the energy industry, our communities and our global competitiveness,” Ramanan Krishnamoortil UH's Vice President for Energy and Innovation says in a statement.

“Today’s students not only recognize the importance of energy, but they are actively driving the push for affordable, reliable, sustainable and secure energy and making choices that clearly indicate that they are meaningfully contributing to the change,” he continues.

“We love that Chevron is sponsoring this group of fellows because it’s a fantastic way for us to get involved with the students who are working on some of the biggest problems we’ll face in society,” Chevron Technology Ventures President Jim Gable adds.

The 2023 UH-Chevron Energy Graduate Fellows are:

Kripa Adhikari, a Ph.D. student in the Department of Civil and Environmental Engineering in the Cullen College of Engineering. Her work focuses on thermal regulation in enhanced geothermal systems. She currently works under the mentorship of Professor Kalyana Babu Nakshatrala and previously worked as a civil engineer with the Nepal Reconstruction Authority.

AparajitaDatta, a researcher at UH Energy and a Ph.D. candidate in the Department of Political Science. Her work focuses on the federal Low-Income Home Energy Assistance Program (LIHEAP), a redistributive welfare policy designed to help households pay their energy bills. She holds a bachelor’s degree in computer science and engineering from the University of Petroleum and Energy Studies in India, and master’s degrees in energy management and public policy from UH. She also recently worked on a paper for UH about transportation emissions.

ChiragGoel, a Ph.D. student in materials science and engineering at UH. His work focuses on using High Temperature Superconductors (HTS) to optimize manufacturing processes, which he says can help achieve carbon-free economies by 2050. The work has uses in renewable energy generation, electric power transmission and advanced scientific applications.

MeghanaIdamakanti, a third-year Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Her work focuses on using electrically heated steam methane for cleaner hydrogen production. She received her bachelor’s degree in chemical engineering from Jawaharlal Nehru Technological University in India in 2020 and previously worked as a process engineering intern at Glochem Industries in India.

ErinPicton, an environmental engineering Ph.D. student in the Shaffer Lab at UH. Her work focuses on ways to increase the sustainability of lithium processing and reducing wasted water and energy. “I love the idea of taking waste and turning it into value,” she said in a statement. She has previously worked in collaboration with MIT and Greentown Labs, as chief sustainability officer of a Houston-based desalination startup; and as a visiting graduate researcher at Argonne National Lab and at INSA in Lyon, France.

Mohamad Sarhan, a Ph.D. student and a teaching assistant in the Department of Petroleum Engineering. His work focuses on seasonal hydrogen storage and the stability of storage candidates during hydrogen cycling. He holds a bachelor’s degree and a master’s degree in petroleum engineering from Cairo University

Swapnil Sharma, a Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. His work has been funded by the Department of Energy and focuses on thermal modeling of large-scale liquid hydrogen storage tanks. He works with Professor Vemuri Balakotaiah. He holds bachelor's and master’s degrees in chemical engineering from the Indian Institute of Technology (IIT). He also developed one of the world’s highest fiber-count optical fiber cables while working in India and founded CovRelief, which helped millions of Indians find resources about hospital beds, oxygen suppliers and more during the pandemic.

LarkinSpires, who's working on her doctoral research in the Department of Earth and Atmospheric Sciences in the College of Natural Sciences and Mathematics. Her work focuses on a semi-empirical Brown and Korringa model for fluid substitution and the ties between geophysics and mathematics. She works under Professor John Castagna and holds a bachelor’s degree in math from Louisiana State University and a master’s degree in geophysics from UH.

Earlier this month Evolve Houston also announced its first-ever cohort of 13 microgrant recipients, whose work aims to make EVs and charging infrastructure more accessible in some of the city's more underserved neighborhoods.

The first phase of the Pelican Gulf Coast Carbon Removal project recently received nearly $4.9 million in grants. Photo via Getty Images

Louisiana DAC project supported by UH, Shell gets $4.9M in funding

closer look

The University of Houston is spilling details about its role in a potential direct air capture, or DAC, hub in Louisiana.

The first phase of the Pelican Gulf Coast Carbon Removal project recently received nearly $4.9 million in grants, including almost $3 million from the U.S. Department of Energy. Led by Louisiana State University, the Pelican consortium includes UH and Shell, whose U.S. headquarters is in Houston.

The funding will go toward studying the feasibility of a DAC hub that would pull carbon dioxide from the air and either store it in deep geological formations or use it to manufacture various products, such as concrete.

“This support of development and deployment of direct air capture technologies is a vital part of carbon management and allows us to explore sustainable technological and commercial opportunities,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release.

Chemical engineer Joseph Powell, founding executive director of the university’s Energy Transition Institute, will be the primary leader of UH’s work on the Pelican project.

“DAC can be an important technology for addressing difficult-to-decarbonize sectors such as aviation and marine transport as well as chemicals, or to achieve negative emissions goals,” Powell says.

Powell, a fellow of the American Institute of Chemical Engineers, was Shell’s first-ever chief scientist for chemical engineering from 2006 until his retirement in 2020. He joined Shell in 1988.

Shell is the Pelican project’s “technical delivery partner.”

“Advancing carbon management technologies is a critical part of the energy transition, and effectively scaling this technology will require continued collaboration, discipline, and innovation,” says Adam Prince, general manager of carbon capture storage strategy and growth at Shell.

One of the biggest obstacles to Texas' net-zero goals is its transportation sector, according to Houston research. Photo via UH.edu

Houston researchers: Texas to face gridlock challenges with reducing emissions in transportation

highway hiccup

A new report found that one of Texas' biggest roadblocks with reducing emissions is its transportation sector.

In its white paper series, the University of Houston's energy researchers found that — unless something changes — the Lone Star State is not likely to hit its carbon neutrality goals by 2050 within the transportation sector.

“What would it take to make the Texas transportation sector net zero by 2050?” Ramanan Krishnamoorti, UH vice president for energy and innovation, says in a news release. “The answer is a miracle, policy interventions that start as soon as possible, and somewhere between 30 to 50 billion dollars of public money between now and 2050 and at least an equal match from the private sector.”

According to the Net Zero in Texas: The Role of Transportation report, over 230 million metric tons of carbon dioxide gas is released from Texas roads each year. By 2050, estimates show that the remaining gasoline and diesel vehicles on the road will still be contributing about 40 million metric tons of emissions. Krishnamoorti collaborated with UH Energy researcher Aparajita Datta on a white paper.

“The future is crucial not only for Texas, where carbon emissions hinge on transportation solutions but also for our nation. Emissions transcend state lines and considering the size of Texas, its growing population and strong industry, the impact is significant,” Krishnamoorti adds.

Some of the challenges the state faces, per the report, hinge on electric vehicle adoption, which has been slow for a variety of reasons. One is the lack of EV production materials, such as lithium, cobalt, copper, manganese and graphite, due to increased demand, which is slated to be increased by 140 to 500 percent.

The EV workforce development also poses a challenge. Right now, hourly wages in the traditional auto sector range from $26 to $60, but most jobs in the EV industry, which are not unionized, range from $17 to $21 per hour.

The call for EV infrastructure is also estimated to be high. Per a news release about the report, "the change will require an annual expenditure of $250 million to $640 million for Level-2 (L2) charging stations and between $500 million and $1.3 billion for DC Fast Charging (DCFC) stations in 2040."

The transition will include an addition of 40,000 and 180,000 jobs in Texas between now and 2050, as well as an estimated $104 billion addition in public health benefits for Texans – fewer deaths, fewer asthma attacks and fewer sick days, according to the study.

“It is evident that decarbonizing Texas’ transportation sector will be a significant challenge and relying solely on consumer behavior to change is unrealistic,” Krishnamoorti says in the release. “We need robust policies to drive the state’s transportation electrification. Let’s acknowledge the journey ahead; federal mandates alone will not guide us to net zero by 2050. Texas needs to act now.”

The University of Houston has received a grant from the Baker Hughes Foundation. Photo via UH.edu

University's energy transition hub scores $100,000 grant from energy corporation

just gifted

A Houston school is cashing in a major gift from a local energy company in order to support the industry's future workforce, research, and more.

The University of Houston Energy Transition Institute received a $100,000 grant from the Baker Hughes Foundation this week, which will work towards the ETI’s goals to support workforce development programs, and environmental justice research.

The program addresses the impact of energy transition solutions in geographical areas most-affected by environmental impacts.

“We are proud to support the University of Houston in its environmental justice research and workforce development programs; at Baker Hughes, we strive to take energy forward, and are committed to a fair and just energy transition,” says Chief Sustainability Officer Allyson Book in a news release. “Novel educational approaches centered around social, climate and environmental justice are crucial to creating a sustainable future for generations to come.”

The grant aims to help ETI in analyzing environmental footprints of energy use processes, energy use processes, impact on health, and emissions, as well as support the university’s Energy Scholars Program, which focuses on research programs on carbon management, hydrogen, and circular plastics for undergraduate students.The donation also supports Baker Hughes’ work with the United Nations’ Sustainable Development Goals (SDGs) that work to ensure “inclusive and equitable quality education for all.”

“We look forward to working with the Baker Hughes Foundation to address grand challenges in energy and chemicals and create a sustainable and equitable future for all,” says Ramanan Krishnamoorti, vice president of energy and innovation at UH.

ETI launched a year ago through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc., and is led by Joe Powell, who opted to take the helm of the program over retiring, telling EnergyCapital that it was an opportunity he couldn't pass up.

UH has announced a central campus innovation hub that will house UH's programs for STEM, social sciences, business and arts. Slated to open in 2025, the 70,000 square foot hub will house a makerspace, the Cyvia and Melvyn Wolff Center for Entrepreneurship, the Energy Transition Institute, innovation programs, and Presidential Frontier Faculty labs and offices.

“The University of Houston aims to transform lives and communities through education, research, innovation and service in a real-world setting," Krishnamoorti says in a news release. “I am confident that working together we will make a greater impact.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Oxy subsidiary secures Microsoft as largest-ever DAC carbon removal credit customer

major move

Occidental Petroleum’s Houston-based carbon capture, utilization and, sequestration (CCUS) subsidiary, 1PointFive, has inked a six-year deal to sell 500,000 metric tons of carbon dioxide removal credits to software giant Microsoft.

In a news release, 1Point5 says this agreement represents the largest-ever single purchase of carbon credits enabled by direct air capture (DAC). DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted.

Under the agreement, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“A commitment of this magnitude further demonstrates how one of the world’s largest corporations is integrating scalable [DAC] into its net-zero strategy,” says Michael Avery, president and general manager of 1PointFive. “Energy demand across the technology industry is increasing, and we believe [DAC] is uniquely suited to remove residual emissions and further climate goals.”

Brian Marrs, senior director for carbon removal and energy at Microsoft, says DAC plays a key role in Microsoft’s effort to become carbon-negative by 2030.

The carbon dioxide will be stored at 1PointFive’s first industrial-scale DAC plant, being built near Odessa. The $1.3 billion Stratos project, which 1Point5 is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 per year.

The facility is scheduled to open in mid-2025.

Aside from Microsoft, organizations that have agreed to buy carbon removal credits from 1Point5 include Amazon, Airbus, All Nippon Airways, the Houston Astros, the Houston Texans, and TD Bank.

Occidental says 1PointFive plans to set up more than 100 DAC facilities worldwide by 2035.

Texas Gov. Greg Abbott demands answers from Houston power company following Beryl

investigation incoming

With around 270,000 homes and businesses still without power in the Houston area almost a week after Hurricane Beryl hit Texas, Gov. Greg Abbott on Sunday said he's demanding an investigation into the response of the utility that serves the area as well as answers about its preparations for upcoming storms.

“Power companies along the Gulf Coast must be prepared to deal with hurricanes, to state the obvious,” Abbott said at his first news conference about Beryl since returning to the state from an economic development trip to Asia.

While CenterPoint Energy has restored power to about 2 million customers since the storm hit on July 8, the slow pace of recovery has put the utility, which provides electricity to the nation’s fourth-largest city, under mounting scrutiny over whether it was sufficiently prepared for the storm that left people without air conditioning in the searing summer heat.

Abbott said he was sending a letter to the Public Utility Commission of Texas requiring it to investigate why restoration has taken so long and what must be done to fix it. In the Houston area, Beryl toppled transmission lines, uprooted trees and snapped branches that crashed into power lines.

With months of hurricane season left, Abbott said he's giving CenterPoint until the end of the month to specify what it'll be doing to reduce or eliminate power outages in the event of another storm. He said that will include the company providing detailed plans to remove vegetation that still threatens power lines.

Abbott also said that CenterPoint didn't have “an adequate number of workers pre-staged" before the storm hit.

Following Abbott's news conference, CenterPoint said its top priority was “power to the remaining impacted customers as safely and quickly as possible,” adding that on Monday, the utility expects to have restored power to 90% of its customers. CenterPoint said it was committed to working with state and local leaders and to doing a “thorough review of our response.”

CenterPoint also said Sunday that it’s been “investing for years” to strengthen the area’s resilience to such storms.

The utility has defended its preparation for the storm and said that it has brought in about 12,000 additional workers from outside Houston. It has said it would have been unsafe to preposition those workers inside the predicted storm impact area before Beryl made landfall.

Brad Tutunjian, vice president for regulatory policy for CenterPoint Energy, said last week that the extensive damage to trees and power poles hampered the ability to restore power quickly.

A post Sunday on CenterPoint's website from its president and CEO, Jason Wells, said that over 2,100 utility poles were damaged during the storm and over 18,600 trees had to be removed from power lines, which impacted over 75% of the utility's distribution circuits.

Things to know: Beryl in the rearview, Devon Energy's big deal, and events not to miss

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Hurricane Beryl's big impact

Hundreds of thousands of people in the Houston area likely won’t have power restored until this week, as the city swelters in the aftermath of Hurricane Beryl.

The storm slammed into Texas on July 8, knocking out power to nearly 2.7 million homes and businesses and leaving huge swaths of the region in the dark and without air conditioning in the searing summer heat.

Although repairs have restored power to nearly 1.4 million customers, the scale of the damage and slow pace of recovery has put CenterPoint Energy, which provides electricity to the nation's fourth-largest city, under mounting scrutiny over whether it was sufficiently prepared for the storm and is doing enough now to make things right.

Some frustrated residents have also questioned why a part of the country that is all too familiar with major storms has been hobbled by a Category 1 hurricane, which is the weakest kind. But a storm's wind speed, alone, doesn't determine how dangerous it can be. Click here to continue reading this article from the AP.

Big deal: Devon Energy to acquire Houston exploration, production biz in $5B deal

Devon Energy is buying Grayson Mill Energy's Williston Basin business in a cash-and-stock deal valued at $5 billion as consolidation in the oil and gas sector ramps up.

The transaction includes $3.25 billion in cash and $1.75 billion in stock.

Grayson Mill Energy, based in Houston, is an oil and gas exploration company that received an initial investment from private equity firm EnCap Investments in 2016.

The firm appears to be stepping back from energy sector as it sells off assets. Last month EnCap-backed XCL Resources sold its Uinta Basin oil and gas assets to SM Energy Co. and Northern Oil and Gas in a transaction totaling $2.55 billion. EnCap had another deal in June as well, selling some assets to Matador Resources for nearly $2 billion. Click here to continue reading.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • 2024 Young Leaders Institute: Renewable Energy and Climate Solutions is taking place July 15 to July 19 at Asia Society of Texas. Register now.
  • CCS/Decarbonization Project Development, Finance and Investment, taking place July 23 to 25, is the deepest dive into the economic and regulatory factors driving the success of the CCS/CCUS project development landscape. Register now.
  • The 5th Texas Energy Forum 2024, organized by U.S. Energy Stream, will take place on August 21 and 22 at the Petroleum Club of Houston. Register now.