meet the chosen ones

University of Houston names first group of Chevron-backed fellows

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Photo via UH.edu

The University of Houston has named eight graduate students to its first-ever cohort of UH-Chevron Energy Graduate Fellows.

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Their work focuses on energy-related research in fields ranging from public policy to geophysics and math. The fellowship is funded by Chevron.

“The UH-Chevron Energy Fellowship program is an exciting opportunity for our graduate students to research the many critical areas that impact the energy industry, our communities and our global competitiveness,” Ramanan Krishnamoortil UH's Vice President for Energy and Innovation says in a statement.

“Today’s students not only recognize the importance of energy, but they are actively driving the push for affordable, reliable, sustainable and secure energy and making choices that clearly indicate that they are meaningfully contributing to the change,” he continues.

“We love that Chevron is sponsoring this group of fellows because it’s a fantastic way for us to get involved with the students who are working on some of the biggest problems we’ll face in society,” Chevron Technology Ventures President Jim Gable adds.

The 2023 UH-Chevron Energy Graduate Fellows are:

Kripa Adhikari, a Ph.D. student in the Department of Civil and Environmental Engineering in the Cullen College of Engineering. Her work focuses on thermal regulation in enhanced geothermal systems. She currently works under the mentorship of Professor Kalyana Babu Nakshatrala and previously worked as a civil engineer with the Nepal Reconstruction Authority.

Aparajita Datta, a researcher at UH Energy and a Ph.D. candidate in the Department of Political Science. Her work focuses on the federal Low-Income Home Energy Assistance Program (LIHEAP), a redistributive welfare policy designed to help households pay their energy bills. She holds a bachelor’s degree in computer science and engineering from the University of Petroleum and Energy Studies in India, and master’s degrees in energy management and public policy from UH. She also recently worked on a paper for UH about transportation emissions.

Chirag Goel, a Ph.D. student in materials science and engineering at UH. His work focuses on using High Temperature Superconductors (HTS) to optimize manufacturing processes, which he says can help achieve carbon-free economies by 2050. The work has uses in renewable energy generation, electric power transmission and advanced scientific applications.

Meghana Idamakanti, a third-year Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Her work focuses on using electrically heated steam methane for cleaner hydrogen production. She received her bachelor’s degree in chemical engineering from Jawaharlal Nehru Technological University in India in 2020 and previously worked as a process engineering intern at Glochem Industries in India.

Erin Picton, an environmental engineering Ph.D. student in the Shaffer Lab at UH. Her work focuses on ways to increase the sustainability of lithium processing and reducing wasted water and energy. “I love the idea of taking waste and turning it into value,” she said in a statement. She has previously worked in collaboration with MIT and Greentown Labs, as chief sustainability officer of a Houston-based desalination startup; and as a visiting graduate researcher at Argonne National Lab and at INSA in Lyon, France.

Mohamad Sarhan, a Ph.D. student and a teaching assistant in the Department of Petroleum Engineering. His work focuses on seasonal hydrogen storage and the stability of storage candidates during hydrogen cycling. He holds a bachelor’s degree and a master’s degree in petroleum engineering from Cairo University

Swapnil Sharma, a Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. His work has been funded by the Department of Energy and focuses on thermal modeling of large-scale liquid hydrogen storage tanks. He works with Professor Vemuri Balakotaiah. He holds bachelor's and master’s degrees in chemical engineering from the Indian Institute of Technology (IIT). He also developed one of the world’s highest fiber-count optical fiber cables while working in India and founded CovRelief, which helped millions of Indians find resources about hospital beds, oxygen suppliers and more during the pandemic.

Larkin Spires, who's working on her doctoral research in the Department of Earth and Atmospheric Sciences in the College of Natural Sciences and Mathematics. Her work focuses on a semi-empirical Brown and Korringa model for fluid substitution and the ties between geophysics and mathematics. She works under Professor John Castagna and holds a bachelor’s degree in math from Louisiana State University and a master’s degree in geophysics from UH.

Earlier this month Evolve Houston also announced its first-ever cohort of 13 microgrant recipients, whose work aims to make EVs and charging infrastructure more accessible in some of the city's more underserved neighborhoods.

Trending News

A View From HETI

The University of Houston is one of 23 institutions to be awarded DOE funding for fusion research. Photo courtesy UH.

The University of Houston will receive $8 million in federal funding from the U.S. Department of Energy for its work on fusion technology to help power data centers and medical work.

Venkat Selvamanickam, professor at UH’s Cullen College of Mechanical and Aerospace Engineering and director of the Advanced Manufacturing Institute, has been tasked to lead the research on superconducting magnets that he said will make compact fusion reactors possible.

“Beyond fusion, superconductors can transform how we deliver power to data centers, enable highly efficient motors and generators and improve electric power devices,” Selvamanickam said in a news release. “They also enable critical applications such as MRI and proton beam therapy for cancer treatment. I want society to experience the broad benefits this remarkable technology can provide.”

UH is one of 23 institutions selected to share part of $134 million from the DOE’s Fusion Energy Sciences division. The total funding is split across two initiatives: $128 million for the Fusion Innovation Research Engine (FIRE) and $6.1 million for the Innovation Network for Fusion Energy program, according to the university.

UH will partner with the FIRE Collaborative for the research, which looks to understand why superconducting magnets in fusion reactors break down and work on developing solutions to make them more resilient.

“The advantage of fusion is it’s clean and it does not require storage. Solar energy can’t be used at night, and wind energy depends on wind conditions,” Selvamanickam added in the release. “Our goal is to make fusion a truly viable energy source.”

Trending News