The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Photo via UH.edu

The University of Houston has named eight graduate students to its first-ever cohort of UH-Chevron Energy Graduate Fellows.

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Their work focuses on energy-related research in fields ranging from public policy to geophysics and math. The fellowship is funded by Chevron.

“The UH-Chevron Energy Fellowship program is an exciting opportunity for our graduate students to research the many critical areas that impact the energy industry, our communities and our global competitiveness,” Ramanan Krishnamoortil UH's Vice President for Energy and Innovation says in a statement.

“Today’s students not only recognize the importance of energy, but they are actively driving the push for affordable, reliable, sustainable and secure energy and making choices that clearly indicate that they are meaningfully contributing to the change,” he continues.

“We love that Chevron is sponsoring this group of fellows because it’s a fantastic way for us to get involved with the students who are working on some of the biggest problems we’ll face in society,” Chevron Technology Ventures President Jim Gable adds.

The 2023 UH-Chevron Energy Graduate Fellows are:

Kripa Adhikari, a Ph.D. student in the Department of Civil and Environmental Engineering in the Cullen College of Engineering. Her work focuses on thermal regulation in enhanced geothermal systems. She currently works under the mentorship of Professor Kalyana Babu Nakshatrala and previously worked as a civil engineer with the Nepal Reconstruction Authority.

Aparajita Datta, a researcher at UH Energy and a Ph.D. candidate in the Department of Political Science. Her work focuses on the federal Low-Income Home Energy Assistance Program (LIHEAP), a redistributive welfare policy designed to help households pay their energy bills. She holds a bachelor’s degree in computer science and engineering from the University of Petroleum and Energy Studies in India, and master’s degrees in energy management and public policy from UH. She also recently worked on a paper for UH about transportation emissions.

Chirag Goel, a Ph.D. student in materials science and engineering at UH. His work focuses on using High Temperature Superconductors (HTS) to optimize manufacturing processes, which he says can help achieve carbon-free economies by 2050. The work has uses in renewable energy generation, electric power transmission and advanced scientific applications.

Meghana Idamakanti, a third-year Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Her work focuses on using electrically heated steam methane for cleaner hydrogen production. She received her bachelor’s degree in chemical engineering from Jawaharlal Nehru Technological University in India in 2020 and previously worked as a process engineering intern at Glochem Industries in India.

Erin Picton, an environmental engineering Ph.D. student in the Shaffer Lab at UH. Her work focuses on ways to increase the sustainability of lithium processing and reducing wasted water and energy. “I love the idea of taking waste and turning it into value,” she said in a statement. She has previously worked in collaboration with MIT and Greentown Labs, as chief sustainability officer of a Houston-based desalination startup; and as a visiting graduate researcher at Argonne National Lab and at INSA in Lyon, France.

Mohamad Sarhan, a Ph.D. student and a teaching assistant in the Department of Petroleum Engineering. His work focuses on seasonal hydrogen storage and the stability of storage candidates during hydrogen cycling. He holds a bachelor’s degree and a master’s degree in petroleum engineering from Cairo University

Swapnil Sharma, a Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. His work has been funded by the Department of Energy and focuses on thermal modeling of large-scale liquid hydrogen storage tanks. He works with Professor Vemuri Balakotaiah. He holds bachelor's and master’s degrees in chemical engineering from the Indian Institute of Technology (IIT). He also developed one of the world’s highest fiber-count optical fiber cables while working in India and founded CovRelief, which helped millions of Indians find resources about hospital beds, oxygen suppliers and more during the pandemic.

Larkin Spires, who's working on her doctoral research in the Department of Earth and Atmospheric Sciences in the College of Natural Sciences and Mathematics. Her work focuses on a semi-empirical Brown and Korringa model for fluid substitution and the ties between geophysics and mathematics. She works under Professor John Castagna and holds a bachelor’s degree in math from Louisiana State University and a master’s degree in geophysics from UH.

Earlier this month Evolve Houston also announced its first-ever cohort of 13 microgrant recipients, whose work aims to make EVs and charging infrastructure more accessible in some of the city's more underserved neighborhoods.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Enbridge's new Texas solar project to power Meta data centers

solar deal

Construction is underway on a new 600-megawatt solar project in Texas that will supply renewable energy to Meta Platforms Inc., the owner of Facebook, Instagram and other tech platforms.

Calgary-based Enbridge Inc., whose gas transmission and midstream operations are based in Houston, announced that Meta has agreed to purchase 100 percent of the power generated by its new $900 million solar project known as Clear Fork.

The clean energy developed at Clear Fork will be used to support Meta’s data center operations, according to a news release from Enbridge. Meta has had net-zero emissions across its operational portfolio since 2020, according to its 2024 environmental report. The company matches 100 percent of its data center usage with renewable energy.

"We are thrilled to partner with Enbridge to bring new renewable energy to Texas and help support our operations with 100% clean energy, " Urvi Parekh, Head of Global Energy at Meta, said in a news release.

The Clear Fork project is expected to be operational by the summer of 2027. It will join Enbridge’s first solar power project in Texas, Orange Grove, which was activated earlier this year, as well as the company’s Sequoia solar project, which is scheduled to go online in early 2026.

"Clear Fork demonstrates the growing demand for renewable power across North America from blue-chip companies who are involved in technology and data center operations," Matthew Akman, executive vice president of corporate strategy and president of power at Enbridge, said in the news release. "Enbridge continues to advance its world-class renewables development portfolio using our financial strength, supply chain reach and construction expertise under a low-risk commercial model that delivers strong competitive returns."

Energy experts: Executive order enhances federal permitting for AI data centers

Guest column

In an effort to accelerate the development of artificial intelligence, President Trump signed an executive order (EO) aimed at expediting the federal permitting process for data centers, particularly those supporting AI inference, training, simulation, or synthetic data generation.

Following the White House’s issuance of a broader AI Action Plan, the EO seeks to streamline regulatory burdens and utilize federal resources to encourage the development of data centers supporting AI, as well as the physical components and energy infrastructure needed to construct and provide power to these data centers.

Qualifying Projects

The EO directs several federal agencies to take actions to incentivize the development of “Qualifying Projects,” which the EO defines as “Data Centers” and “Covered Component Projects.” The EO defines “Data Center Projects” as facilities that require over 100 megawatts (MW) of new load dedicated to AI inference, training, simulation, or synthetic data generation. The EO defines Covered Component Projects as materials, products, and infrastructure that are required to build Data Center Projects or upon which Data Center Projects depend, including energy infrastructure projects like transmission lines and substations, dispatchable base load energy sources like natural gas, geothermal, and nuclear used principally to power Data Center Projects, and semiconductors and related equipment. For eligibility as a Qualifying Project, the project sponsor must commit at least $500 million in capital expenditures. Data Center Projects and Covered Component Projects may also meet the definition of Qualifying Project if they protect national security or are otherwise designated as Qualifying Projects by the Secretary of Defense, Secretary of the Interior, Secretary of Commerce, or Secretary of Energy.

Streamlining Permitting of Qualifying Projects

The EO outlines the following strategies aimed at improving the efficiency of environmental reviews and permitting for Qualifying Projects:

  • NEPA Applicability: The Council on Environmental Quality (CEQ), in coordination with relevant agencies, is directed to utilize existing and new categorical exclusions under the National Environmental Policy Act (NEPA) to cover actions related to Qualifying Projects, which “normally do not have a significant effect on the human environment.” The EO states that where federal financial assistance represents less than 50 percent of total project costs of a Qualifying Project, the Project shall be presumed not to be a “major Federal action” requiring NEPA review.
  • FAST-41: The Executive Director of the Federal Permitting Improvement Steering Council (FPISC) is empowered to designate a Qualifying Project as a “transparency project” under the Fixing America’s Surface Transportation Act (FAST-41) and expedite its transition from a transparency project to a “covered project” under FAST-41. FPISC is directed to consider all available options to designate a Qualifying Project as a FAST-41 covered project, even where the Qualifying Project may not be eligible.
  • EPA Permitting: The US Environmental Protection Agency (EPA) is directed to modify applicable regulations under several environmental protection statutes impacting the development of Qualifying Projects on federal and non-federal lands. EPA is also directed to develop guidance to expedite environmental reviews for identification and reuse of Brownfield and Superfund Sites suitable for Qualifying Projects. Importantly, state environmental permitting agencies are not subject to the EO.
  • Corps Permitting: The US Army Corps of Engineers is directed to review the nationwide permits issued under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899 to determine whether an activity-specific nationwide permit is needed to facilitate the efficient permitting of activities related to Qualifying Projects.
  • Interior Permitting: The US Department of the Interior is directed to consult with the US Department of Commerce regarding the streamlining of Endangered Species Act consultations for Qualifying Projects, and to work with the US Department of Energy to identify federal lands that may be available for use by Qualifying Projects and offer appropriate authorizations to project sponsors.

Federal Incentives for Qualifying Projects

The EO also directs the US Secretary of Commerce to “launch an initiative to provide financial support for Qualifying Projects,” which may include loans, grants, tax incentives, and offtake agreements. The EO further directs all “relevant agencies” to identify and submit to the White House Office of Office of Science and Technology Policy any relevant existing financial support that can be used to assist Qualifying Projects, consistent with the protection of national security.

The EO reinforces the Trump administration’s focus on AI and creates new opportunities for both AI data center developers and energy infrastructure companies providing power or project components to these data centers. Proactive engagement with relevant agencies will be crucial for capitalizing on the opportunities created by this EO and the broader AI Action Plan. By leveraging these financial and environmental incentives, project developers may be able to shorten permitting timelines, reduce costs, and take advantage of federal financial support.

---

Jason B. Hutt, Taylor M. Stuart and Anouk Nouet are lawyers at Bracewell. Hutt is chair of the firm’s environment, lands and resources department. Stuart counsels energy, infrastructure, and industrial clients on matters involving environmental and natural resources law and policy. Nouet advises clients on litigation, enforcement and project development matters with a focus on complex environmental and natural resources law and policy.

Houston clean-chemicals startup Solidec raises $2M to scale tech

fresh funding

Solidec, a Houston startup that specializes in manufacturing “clean” chemicals, has raised more than $2 million in pre-seed funding.

Houston-based New Climate Ventures led the oversubscribed pre-seed round, with participation from Plug and Play Ventures, Ecosphere Ventures, the Collaborative Fund, Safar Partners, Echo River Capital and Semilla Climate Capital, among other investors.

Solidec’s approach to chemical manufacturing replaces centralized infrastructure with modular on-site production using only air, water and electricity. Solidec’s platform is powered by modular reactors capable of producing widely used chemicals such as hydrogen peroxide, formic acid, acetic acid and ethylene.

“We’ve known the Solidec team for almost two years and have developed a high degree of conviction in the team, their technology, and their go-to-market strategy,” Eric Rubenstein, managing partner at New Climate Ventures, said in a news release. “We’re particularly excited about Solidec’s ability to produce many different widely used chemicals. It gives them critical flexibility to expand and serve a broad customer base.”

Solidec is initially focusing on hydrogen peroxide.

“Traditionally, hydrogen peroxide is produced in centralized, energy-intensive facilities using carbon-intensive inputs, then transported long distances, resulting in a significant carbon footprint,” Ryan DuChanois, co-founder and CEO of Solidec, said in the release. “Solidec’s modular reactor produces clean chemicals like hydrogen peroxide on-site, in fewer steps, and with less energy, slashing emissions, supply-chain risk, and cost.”

Solidec said its technology “is poised to disrupt the multibillion-dollar commodity and chemical industries.” The company has already signed up several customers.

The startup, a Rice University spinout, is a graduate of the Chevron Catalyst Program and a member of Greentown Labs Houston. It was cofounded by DuChanois, Haotian Wang and Yang Xia.