The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Photo via UH.edu

The University of Houston has named eight graduate students to its first-ever cohort of UH-Chevron Energy Graduate Fellows.

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Their work focuses on energy-related research in fields ranging from public policy to geophysics and math. The fellowship is funded by Chevron.

“The UH-Chevron Energy Fellowship program is an exciting opportunity for our graduate students to research the many critical areas that impact the energy industry, our communities and our global competitiveness,” Ramanan Krishnamoortil UH's Vice President for Energy and Innovation says in a statement.

“Today’s students not only recognize the importance of energy, but they are actively driving the push for affordable, reliable, sustainable and secure energy and making choices that clearly indicate that they are meaningfully contributing to the change,” he continues.

“We love that Chevron is sponsoring this group of fellows because it’s a fantastic way for us to get involved with the students who are working on some of the biggest problems we’ll face in society,” Chevron Technology Ventures President Jim Gable adds.

The 2023 UH-Chevron Energy Graduate Fellows are:

Kripa Adhikari, a Ph.D. student in the Department of Civil and Environmental Engineering in the Cullen College of Engineering. Her work focuses on thermal regulation in enhanced geothermal systems. She currently works under the mentorship of Professor Kalyana Babu Nakshatrala and previously worked as a civil engineer with the Nepal Reconstruction Authority.

Aparajita Datta, a researcher at UH Energy and a Ph.D. candidate in the Department of Political Science. Her work focuses on the federal Low-Income Home Energy Assistance Program (LIHEAP), a redistributive welfare policy designed to help households pay their energy bills. She holds a bachelor’s degree in computer science and engineering from the University of Petroleum and Energy Studies in India, and master’s degrees in energy management and public policy from UH. She also recently worked on a paper for UH about transportation emissions.

Chirag Goel, a Ph.D. student in materials science and engineering at UH. His work focuses on using High Temperature Superconductors (HTS) to optimize manufacturing processes, which he says can help achieve carbon-free economies by 2050. The work has uses in renewable energy generation, electric power transmission and advanced scientific applications.

Meghana Idamakanti, a third-year Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Her work focuses on using electrically heated steam methane for cleaner hydrogen production. She received her bachelor’s degree in chemical engineering from Jawaharlal Nehru Technological University in India in 2020 and previously worked as a process engineering intern at Glochem Industries in India.

Erin Picton, an environmental engineering Ph.D. student in the Shaffer Lab at UH. Her work focuses on ways to increase the sustainability of lithium processing and reducing wasted water and energy. “I love the idea of taking waste and turning it into value,” she said in a statement. She has previously worked in collaboration with MIT and Greentown Labs, as chief sustainability officer of a Houston-based desalination startup; and as a visiting graduate researcher at Argonne National Lab and at INSA in Lyon, France.

Mohamad Sarhan, a Ph.D. student and a teaching assistant in the Department of Petroleum Engineering. His work focuses on seasonal hydrogen storage and the stability of storage candidates during hydrogen cycling. He holds a bachelor’s degree and a master’s degree in petroleum engineering from Cairo University

Swapnil Sharma, a Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. His work has been funded by the Department of Energy and focuses on thermal modeling of large-scale liquid hydrogen storage tanks. He works with Professor Vemuri Balakotaiah. He holds bachelor's and master’s degrees in chemical engineering from the Indian Institute of Technology (IIT). He also developed one of the world’s highest fiber-count optical fiber cables while working in India and founded CovRelief, which helped millions of Indians find resources about hospital beds, oxygen suppliers and more during the pandemic.

Larkin Spires, who's working on her doctoral research in the Department of Earth and Atmospheric Sciences in the College of Natural Sciences and Mathematics. Her work focuses on a semi-empirical Brown and Korringa model for fluid substitution and the ties between geophysics and mathematics. She works under Professor John Castagna and holds a bachelor’s degree in math from Louisiana State University and a master’s degree in geophysics from UH.

Earlier this month Evolve Houston also announced its first-ever cohort of 13 microgrant recipients, whose work aims to make EVs and charging infrastructure more accessible in some of the city's more underserved neighborhoods.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Eclipse Energy lands Weatherford investment to scale clean hydrogen tech

clean energy collab

Oil and gas giant Weatherford International (NASDAQ: WFRD) has made a capital investment for an undisclosed amount in Eclipse Energy as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as January 2026. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources.

“We strongly believe the subsurface is the most overlooked climate asset,” Prabhdeep Singh Sekhon, CEO of Eclipse Energy, said in the release. “This partnership demonstrates how traditional oilfield expertise and frontier biotechnology can come together to transform the energy transition. Weatherford’s global reach and deep technical knowledge will accelerate our ability to scale our low-carbon technology rapidly and cost-effectively.”

Eclipse Energy, previously known as Gold H2, completed its first field trial this summer, demonstrating subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, and it could also extend "beyond hydrogen, laying the foundation for the next generation of subsurface clean energy fuels."

Last month, Eclipse Energy won in the Energy Transition Business category at the 2025 Houston Innovation Awards. The company closed an $8 million series A this year and has plans to raise another round in 2026.

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

ERCOT approves $9.4B project to improve grid, meet data center demand

power project

The Electric Reliability Council of Texas, which manages the electric grid for 90 percent of Texans, is undertaking a $9.4 billion project to improve the reliability and efficiency of statewide power distribution. The initiative comes as ERCOT copes with escalating demand for electricity from data centers and cryptocurrency-mining facilities.

The project, approved Dec. 9 by ERCOT’s board, will involve building a 1,109-mile “super highway” of new 765-kilovolt transmission lines. One kilovolt equals 1,000 volts of electricity.

According to the Hoodline Dallas news site, the $9.4 billion project represents the five- to six-year first phase of ERCOT’s Strategic Transmission Expansion Plan (STEP). Hoodline says the plan, whose price tag is nearly $33 billion, calls for 2,468 miles of new 765-kilovolt power lines.

STEP will enable ERCOT to “move power longer distances with fewer losses,” Hoodline reports.

Upgrading the ERCOT grid is a key priority amid continued population growth in Texas, along with the state’s explosion of new data centers and cryptocurrency-mining facilities.

ERCOT says about 11,000 megawatts of new power generation capacity have been added to the ERCOT grid since last winter.

But in a report released ahead of the December board meeting, ERCOT says it received 225 requests this year from large power users to connect to its grid — a 270 percent uptick in the number of megawatts being sought by mega-users since last December. Nearly three-fourths (73 percent) of the requests came from data centers.

Allan Schurr, chief commercial officer of Houston-based Enchanted Rock, a provider of products and services for microgrids and onsite power generation, tells Energy Capital that the quickly expanding data center industry is putting “unprecedented pressure” on ERCOT’s grid.

“While the state has added new generation and transmission capacity, lengthy interconnection timelines and grid-planning limitations mean that supply and transmission are not keeping pace with this rapid expansion,” Schurr says. “This impacts both reliability and affordability.”

For families in Texas, this could result in higher energy bills, he says. Meanwhile, critical facilities like hospitals and grocery stores face a heightened challenge of preventing power outages during extreme weather or at other times when the ERCOT grid is taxed.

“I expect this trend to continue as AI and high-density computing grow, driving higher peak demand and greater grid variability — made even more complex by more renewables, extreme weather and other large energy users, like manufacturers,” Schurr says.

According to the Pew Research Center, data centers accounted for 4 percent of U.S. electricity use in 2024, and power demand from data centers is expected to more than double by 2030. Data centers that support the AI boom make up much of the rising demand.

In September, RBN Energy reported more than 10 massive data-center campuses had been announced in Texas, with dozens more planned. The Lone Star State is already home to roughly 400 data centers.

“Texas easily ranks among the nation’s top states for existing data centers, with only Virginia edging it out in both data-center count and associated power demand,” says RBN Energy.