CompuCycle reports that it's the only service provider in the country that can provide a recycling solution for both metals and plastics in-house. Courtesy of CompuCycle

An innovative Houston company focused on sustainable tech recycling has expanded.

CompuCycle describes its unique Plastics Recycling System as the first and only certified, single solution e-waste recycling business. The company's unique process can now break down discarded technology products into single polymers that can then be reused in the manufacturing process.

“Properly managing all components of electronics is a cornerstone of sustainability and environmental responsibility,” Kelly Adels Hess, CEO of CompuCycle, says in a news release. “Making single polymer plastics that original equipment manufacturers (OEMs) can reuse to produce new electronics or other products, while adhering to international recycling standards, is a gamechanger for domestic companies and those that need their plastics shipped globally.”

As of now, CompuCycle reports that it's the only service in the country that can provide a recycling solution for both metals and plastics in-house. The company has met the Environmental Protection Agency’s two accredited certification standards, e-Stewards and R2 certification requirements, per the release.

“We saw an opportunity to solve an industry challenge by creating the first domestic, sustainable, single-solution e-waste plastics program that reduces the amount of plastic negatively impacting the environment, while also making it advantageous for companies to recycle and reuse. It’s truly a win for everyone involved,” adds Clive Hess, president at CompuCycle.

CompuCycle, which has over a 20-year history, added recycling electronics to its toolkit in 2019. While CompuCycle has focused on responsible electronics disposal since Kelly's father-in-law, John Hess, founded the company in 1996, certain recent events have increased the need to recycle more efficiently.

"China is no longer accepting scrap, which is where a lot of materials would go after it was dismantled," Kelly told InnovationMap in 2019. "That's why we've created this solution to be able to responsibly handle it here in the U.S."

The hub will combine advanced sorting and recycling operations to address the plastic waste challenge. Photo courtesy of LYB

LYB makes deal to bring new plastics recycling hub to German town

guten tag

Houston-based chemical company LyondellBasell has signed a land lease agreement for a new integrated plastic waste recycling hub by an existing industrial park in Knapsack, Germany.

The agreement is with YNCORIS, a German industrial service provider. The hub will combine advanced sorting and recycling operations to address the plastic waste challenge and the company hopes it will grow the circular economy.

The first phase of the project will see the construction of an advanced sorting facility, which will process mixed plastic waste that can produce feedstock for mechanical and advanced recycling, since this mixed plastic waste is not recycled and usually sent to incineration for energy recovery. The hub's initial advanced sorting facility expects to start operations in the first quarter of 2026. The large facility will cover an area equivalent to 20 soccer fields.

"The industrial park in Knapsack is the ideal location for our integrated hub as is it close to our world-scale facilities in Wesseling and will allow us to develop additional technologies for the recycling of plastic waste," Yvonne van der Laan, LyondellBasell's executive vice president of circular and low carbon solutions, says in a news release. "The integration of various technologies will allow us to build scale and offer our customers a wide range of products from recycled and renewable resources."

In April, LyondellBasell also secured 208 megawatts of renewable energy capacity from a solar park in Germany. Under the 12-year deal, LyondellBasell aim s to purchase about 210 gigawatt-hours of solar power each year from Germany-based Encavis Asset Management.

By 2030, LyondellBasell hopes to produce and market at least 2 million metric tons of recycled and renewable‑based polymers annually.

The plan is to operate the newly-acquired mechanical recycling plant in California to manufacture post-consumer recycled resins using plastic waste feedstock. Photo courtesy of LyondellBasell

LyondellBasell acquires California plastics recycling operations

seeing green

LyondellBasell has made a strategic acquisition of a plastics recycling facility.

The Houston-based company acquired the mechanical recycling assets containing rigid plastics recycling processing lines from recycling and waste management service provider PreZero. With the acquisition, LyondellBasell gains the processing facility in Jurupa Valley, California, with a production capacity of 50 million pounds per year for recycled materials.

The plan is to operate the newly-acquired mechanical recycling plant in California to manufacture post-consumer recycled resins using plastic waste feedstock, according to LyondellBasell. LyondellBasell aims to use recycled polymers under its CirculenRecover brand, which is part of the company's Circulen portfolio of products that enable the circular economy.

"This acquisition further strengthens our U.S. presence and will deliver value for our customers and plastic recycling rates in the West Coast," Yvonne van der Laan, LyondellBasell executive vice president, Circular and Low Carbon Solutions, says in a news release. "We will build upon our existing experience in plastic recycling in Europe and deliver a state-of-the-art, mechanical recycling facility to meet growing demand for recycled products in the U.S."

In 2025, LyondellBasell expects to finish the operations at its new facility.

With the previously announced equity stake in the Cyclyx joint venture and investment in the Cyclyx Circularity Center in Houston, the latest transaction hopes to enhance the competitiveness in the U.S. recycled products market.

University of Houston students Sarah Grace Kimberly and Emma Nicholas won UH Energy Transition Institute's inaugural Circular Plastics Challenge. Photo via UH.edu

Inaugural Houston challenge names winning team with plastics solution

first place

Dozens of Houston college students tackled circular economy challenges, and two came out on top by winning the top award.

University of Houston’s Energy Transition Institute hosted a challenge for students to address the issue of plastic waste and create a real-world circular economy, as over 60 students participated in the inaugural Circular Plastics Challenge.

Six finalist teams presented their solutions at the 2023 Energy Night hosted by the UH Energy Coalition with final pitches ranging from transportation emissions, renewable packaging and sustainable material, drones to limit excess packaging, and more topics aimed to reduce use.

Sarah Grace Kimberly and Emma Nicholas were the challenge winners. The team proposed using a liquid-based membrane filter inserted into household drains to combat microplastics found in common personal care products, such as makeup and hygiene items. The membrane’s function would act as a magnet, which would attract and capture microplastics from wastewater in showers and sinks. Both juniors from the C.T. Bauer College of Business also won the viewer’s choice award from their peers.

“We wanted to provide a simple solution to a growing problem,” Kimberly says in a news release. “Before we did this project, we didn’t know that microplastics existed, let alone in our makeup. I didn’t know I was basically putting plastic on my face every single day and washing it off into our drains. Because it’s an unseen problem, it’s hard to address.”

UH’s ETI is an academic research institute that focuses on advancing environmentally responsible energy efforts.

“If you look at the wide variety of proposals and approaches, you can see the complexity of the problem and all the different things that society must consider to find solutions,” ETI Founding Executive Director Joe Powell says in the release. “I think circularity in plastics and chemicals is as difficult to address as the net-zero issue within the energy sector, if not more. We have a unique opportunity here to tackle both, and it’s really great to see our students thinking ahead.

Other finalists included Wolff Center for Entrepreneurship seniors Nicolas Einarsson, Bennett Mainini, Arianna Chavarria, and Fernanda Ruelas, who secured second place with their renewable packaging company presentation titled “ShipSafe.”

Reverse Logistics — with team members Hasti Seraji, Farzane Ezzati, and Haowei Yang — earned third place for their consumer-driven reverse logistics approach to recycling packaging.

LYB is building its first industrial-scale catalytic advanced recycling demonstration plant at its site in Germany. Photo via lyondellbasell.com

Global chemicals co. with Houston HQ to build industrial-scale recycling plant in Germany

seeing green

This month, LyondellBasell has announced it has officially pulled the trigger on a new recycling plant in Germany.

Dutch chemicals leader LYB, as the company has rebranded recently, has made its final investment decision to build its first industrial-scale catalytic advanced recycling demonstration plant at its site in Wesseling, Germany.

The project is reported to be the first "commercial scale, single-train advanced recycling plant to convert post-consumer plastic waste into feedstock for production of new plastic materials that can be ran at net zero GHG emissions," per LYB's news release.

The plant will utilize LYB's MoReTec technology, which targets difficult to recycle plastics like mixed or flexible materials, and have an annual capacity of 50,000 tonnes per year. The amount expected to be recycled annually will equal plastic packaging waste generated by over 1.2 million German citizens per year.

"We are committed to addressing the global challenge of plastic waste and advancing a circular economy, and today's announcement is another meaningful step in that direction," says Peter Vanacker, LYB CEO, in the release. "Scaling up our catalytic advanced recycling technology will allow us to return larger volumes of plastic waste back into the value chain. By doing this, we will have the ability to produce more materials for high-quality applications, retaining value of plastics for as long as possible."

The plant's construction is anticipated to be done by the end of 2025. The majority of the sorted processed feedstock will be supplied by Source One Plastics, a joint venture of LYB and 23 Oaks Investments that formed in October 2022.

A few weeks ago, LYB purchased a 25 percent stake in a joint venture that seeks to accelerate advancements in plastic recycling. The joint venture, Cyclyx International, was formed in 2020 by Spring-based energy giant ExxonMobil and Tigard, Oregon-based plastic recycling innovator Agilyx.

In 2022, Cyclyx announced it had inked a deal with ExxonMobil and LyondellBasell to develop a first-of-its-kind plastic waste sorting and processing plant in the Houston area. The estimated $100 million facility, set to open in 2024, is poised to annually produce 330 million pounds of plastic feedstock, which is made up of recycled materials that can be used to manufacture new plastics.

LyondellBasell bought into a joint venture, Cyclyx International, that was formed in 2020 by Spring-based energy giant ExxonMobil and Tigard, Oregon-based plastic recycling innovator Agilyx. Photo courtesy ExxonMobil

Houston energy company buys in on plastic recycling

Cyclyx secured

Dutch chemical company LyondellBasell, whose U.S. headquarters is in Houston, has purchased a 25 percent stake in a joint venture that seeks to accelerate advancements in plastic recycling.

The joint venture, Cyclyx International, was formed in 2020 by Spring-based energy giant ExxonMobil and Tigard, Oregon-based plastic recycling innovator Agilyx.

In 2022, Cyclyx announced it had inked a deal with ExxonMobil and LyondellBasell to develop a first-of-its-kind plastic waste sorting and processing plant in the Houston area. The estimated $100 million facility, set to open in 2024, is poised to annually produce 330 million pounds of plastic feedstock, which is made up of recycled materials that can be used to manufacture new plastics.

“Investing in plastic waste value chain experts such as Cyclyx, together with Agilyx and ExxonMobil, helps create the robust supply chains we all need to increase access to circular and renewable feedstocks,” Yvonne van der Laan, executive vice president of LyondellBasell, says in a news release.

In conjunction with the LyondellBasell announcement, Cyclyx says it’s expanding the licensing-only model for its recycling centers to add a “build, own, and operate” option. Cyclyx says this shift will enable it to control custom-blended feedstocks from sourcing through delivery.

Last year, Cyclyx revealed it had completed a pilot project for grocery store chain Food Lion.

At the outset of the project, plastic waste at certain Food Lion stores was collected for recycling. Cyclyx then sorted and pre-processed the waste before sending it to ExxonMobil’s recycling facility in Baytown. In Baytown, ExxonMobil used its Exxtend technology for advanced recycling to create new “virgin quality” plastics and other products.

ExxonMobil says the Baytown facility, which began operating in 2021, can process more than 80 million pounds of plastic waste per year. The company says the Exxtend technology it uses there breaks down hard-to-recycle plastic waste — such as synthetic athletic fields, bubble wrap, and motor oil bottles — that previously would have headed to landfills.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researcher dives into accessibility of public EV charging stations

EV equity

A Rice University professor wants to redraw the map for the placement of electric vehicle charging stations to level the playing field for access to EV power sources.

Xinwu Qian, assistant professor of civil and environmental engineering at Rice, is leading research to rethink where EV charging stations should be installed so that they’re convenient for all motorists going about their day-to-day activities.

“Charging an electric vehicle isn’t just about plugging it in and waiting — it takes 30 minutes to an hour even with the fastest charger — therefore, it’s an activity layered with social, economic, and practical implications,” Qian says on Rice’s website. “While we’ve made great strides in EV adoption, the invisible barriers to public charging access remain a significant challenge.”

According to Qian’s research, public charging stations are more commonly located near low-income households, as these residents are less likely to afford or enjoy access to at-home charging. However, these stations are often far from where they conduct everyday activities.

The Rice report explains that, in contrast, public charging stations are geographically farther from affluent suburban areas. However, they often fit more seamlessly into these residents' daily schedules. As a result, low-income communities face an opportunity gap, where public charging may exist in theory but is less practical in reality.

A 2024 study led by Qian analyzed data from over 28,000 public EV charging stations and 5.5 million points across 20 U.S. cities.

“The findings were stark: Income, rather than proximity, was the dominant factor in determining who benefits most from public EV infrastructure,” Qian says.

“Wealthier individuals were more likely to find a charging station at places they frequent, and they also had the flexibility to spend time at those places while charging their vehicles,” he adds. “Meanwhile, lower-income communities struggled to integrate public charging into their routines due to a compounded issue of shorter dwell times and less alignment with daily activities.”

To make matters worse, businesses often target high-income people when they install charging stations, Qian’s research revealed.

“It’s a sad reality,” Qian said. “If we don’t address these systemic issues now, we risk deepening the divide between those who can afford EVs and those who can’t.”

A grant from the National Science Foundation backs Qian’s further research into this subject. He says the public and private sectors must collaborate to address the inequity in access to public charging stations for EVs.

Energy expert: Unlocking the potential of the Texas grid with AI & DLR

guest column

From bitter cold and flash flooding to wildfire threats, Texas is no stranger to extreme weather, bringing up concerns about the reliability of its grid. Since the winter freeze of 2021, the state’s leaders and lawmakers have more urgently wrestled with how to strengthen the resilience of the grid while also supporting immense load growth.

As Maeve Allsup at Latitude Media pointed out, many of today’s most pressing energy trends are converging in Texas. In fact, a recent ERCOT report estimates that power demand will nearly double by 2030. This spike is a result of lots of large industries, including AI data centers, looking for power. To meet this growing demand, Texas has abundant natural gas, solar and wind resources, making it a focal point for the future of energy.

Several new initiatives are underway to modernize the grid, but the problem is that they take a long time to complete. While building new power generation facilities and transmission lines is necessary, these processes can take 10-plus years to finish. None of these approaches enables both significantly expanded power and the transmission capacity needed to deliver it in the near future.

Beyond “curtailment-enabled headroom”

A study released by Duke University highlighted the “extensive untapped potential” in U.S. power plants for powering up to 100 gigawatts of large loads “while mitigating the need for costly system upgrades.” In a nutshell: There’s enough generating capacity to meet peak demand, so it’s possible to add new loads as long as they’re not adding to the peak. New data centers must connect flexibly with limited on-site generation or storage to cover those few peak hours. This is what the authors mean by “load flexibility” and “curtailment-enabled headroom.”

As I shared with POWER Magazine, while power plants do have significant untapped capacity, the transmission grid might not. The study doesn’t address transmission constraints that can limit power delivery where it’s needed. Congestion is a real problem already without the extra load and could easily wipe out a majority of that additional capacity.

To illustrate this point, think about where you would build a large data center. Next to a nuclear plant? A nuclear plant will already operate flat out and will not have any extra capacity. The “headroom” is available on average in the whole system, not at any single power plant. A peaking gas plant might indeed be idle most of the time, but not 99.5% of the time as highlighted by the Duke authors as the threshold. Your data center would need to take the extra capacity from a number of plants, which may be hundreds of miles apart. The transmission grid might not be able to cope with it.

However, there is also additional headroom or untapped potential in the transmission grid itself that has not been used so far. Grid operators have not been able to maximize their grids because the technology has not existed to do so.

The problem with existing grid management and static line ratings

Traditionally, power lines are given a static rating throughout the year, which is calculated by assuming the worst possible cooling conditions of a hot summer day with no wind. This method leads to conservative capacity estimates and does not account for environmental factors that can impact how much power can actually flow through a line.

Take the wind-cooling effect, for example. Wind cools down power lines and can significantly increase the capacity of the grid. Even a slight wind blowing around four miles per hour can increase transmission line capacity by 30 percent through cooling.

That’s why dynamic line ratings (DLR) are such a useful tool for grid operators. DLR enables the assessment of individual spans of transmission lines to determine how much capacity they can carry under current conditions. On average, DLR increases capacity by a third, helping utilities sell more power while bringing down energy prices for consumers.

However, DLR is not yet widely used. The core problem is that weather models are not accurate enough for grid operators. Wind is very dependent on the detailed landscape, such as forests or hills, surrounding the power line. A typical weather forecast will tell you the average conditions in the 10 square miles around you, not the wind speed in the forest where the power line is. Without accurate wind data at every section, even a small portion of the line risks overheating unless the line is managed conservatively.

DLR solutions have been forced to rely on sensors installed on transmission lines to collect real-time weather measurements, which are then used to estimate line ratings. However, installing and maintaining hundreds of thousands of sensors is extremely time-consuming, if not practically infeasible.

The Elering case study

Last year, my company, Gridraven, tested our machine learning-powered DLR system, which uses a AI-enabled weather model, on 3,100 miles of 110-kilovolt and 330-kilovolt lines operated by Elering, Estonia’s transmission system operator, predicting ratings in 15,000 individual locations. The power lines run through forests and hills, where conventional forecasting systems cannot predict conditions with precision.

From September to November 2024, our average wind forecast accuracy saw a 60 percent improvement over existing technology, resulting in a 40 percent capacity increase compared to the traditional seasonal rating. These results were further validated against actual measurements on transmission towers.

This pilot not only demonstrated the power of AI solutions against traditional DLR systems but also their reliability in challenging conditions and terrain.

---

Georg Rute is the CEO of Gridraven, a software provider for Dynamic Line Ratings based on precision weather forecasting available globally. Prior to Gridraven, Rute founded Sympower, a virtual power plant, and was the head of smart grid development at Elering, Estonia's Transmission System Operator. Rute will be onsite at CERAWeek in Houston, March 10-14.

The views expressed herein are Rute's own. A version of this article originally appeared on LinkedIn.

Energy co. to build 30 micro-nuclear reactors in Texas to meet rising demand

going nuclear

A Washington, D.C.-based developer of micro-nuclear technology plans to build 30 micro-nuclear reactors near Abilene to address the rising demand for electricity to operate data centers across Texas.

The company, Last Energy, is seeking permission from the Electric Reliability Council of Texas (ERCOT) and the U.S. Nuclear Regulatory Commission to build the microreactors on a more than 200-acre site in Haskell County, about 60 miles north of Abilene.

The privately financed microreactors are expected to go online within roughly two years. They would be connected to ERCOT’s power grid, which serves the bulk of Texas.

“Texas is America’s undisputed energy leader, but skyrocketing population growth and data center development is forcing policymakers, customers, and energy providers to embrace new technologies,” says Bret Kugelmass, founder and CEO of Last Energy.

“Nuclear power is the most effective way to meet Texas’ demand, but our solution—plug-and-play microreactors, designed for scalability and siting flexibility—is the best way to meet it quickly,” Kugelmass adds. “Texas is a state that recognizes energy is a precondition for prosperity, and Last Energy is excited to contribute to that mission.”

Texas is home to more than 340 data centers, according to Perceptive Power Infrastructure. These centers consume nearly 8 gigawatts of power and make up 9 percent of the state’s power demand.

Data centers are one of the most energy-intensive building types, says to the U.S. Department of Energy, and account for approximately 2 percent of the total U.S. electricity use.

Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, according to the Idaho National Laboratory. Yet each Last Energy microreactor can produce 20 megawatts of thermal energy.

Before announcing the 30 proposed microreactors to be located near Abilene, Last Energy built two full-scale prototypes in Texas in tandem with manufacturing partners. The company has also held demonstration events in Texas, including at CERAWeek 2024 in Houston. Last Energy, founded in 2019, is a founding member of the Texas Nuclear Alliance.

“Texas is the energy capital of America, and we are working to be No. 1 in advanced nuclear power,” Governor Greg Abbott said in a statement. “Last Energy’s microreactor project in Haskell County will help fulfill the state’s growing data center demand. Texas must become a national leader in advanced nuclear energy. By working together with industry leaders like Last Energy, we will usher in a nuclear power renaissance in the United States.”

Nuclear energy is not a major source of power in Texas. In 2023, the state’s two nuclear power plants generated about 7% of the state’s electricity, according to the U.S. Energy Information Administration. Texas gains most of its electricity from natural gas, coal, wind, and solar.