seeing green

Houston company advances electronics recycling mission with new accreditation

CompuCycle reports that it's the only service provider in the country that can provide a recycling solution for both metals and plastics in-house. Courtesy of CompuCycle

An innovative Houston company focused on sustainable tech recycling has expanded.

CompuCycle describes its unique Plastics Recycling System as the first and only certified, single solution e-waste recycling business. The company's unique process can now break down discarded technology products into single polymers that can then be reused in the manufacturing process.

“Properly managing all components of electronics is a cornerstone of sustainability and environmental responsibility,” Kelly Adels Hess, CEO of CompuCycle, says in a news release. “Making single polymer plastics that original equipment manufacturers (OEMs) can reuse to produce new electronics or other products, while adhering to international recycling standards, is a gamechanger for domestic companies and those that need their plastics shipped globally.”

As of now, CompuCycle reports that it's the only service in the country that can provide a recycling solution for both metals and plastics in-house. The company has met the Environmental Protection Agency’s two accredited certification standards, e-Stewards and R2 certification requirements, per the release.

“We saw an opportunity to solve an industry challenge by creating the first domestic, sustainable, single-solution e-waste plastics program that reduces the amount of plastic negatively impacting the environment, while also making it advantageous for companies to recycle and reuse. It’s truly a win for everyone involved,” adds Clive Hess, president at CompuCycle.

CompuCycle, which has over a 20-year history, added recycling electronics to its toolkit in 2019. While CompuCycle has focused on responsible electronics disposal since Kelly's father-in-law, John Hess, founded the company in 1996, certain recent events have increased the need to recycle more efficiently.

"China is no longer accepting scrap, which is where a lot of materials would go after it was dismantled," Kelly told InnovationMap in 2019. "That's why we've created this solution to be able to responsibly handle it here in the U.S."

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News