The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Photo via UH.edu

The University of Houston has named eight graduate students to its first-ever cohort of UH-Chevron Energy Graduate Fellows.

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Their work focuses on energy-related research in fields ranging from public policy to geophysics and math. The fellowship is funded by Chevron.

“The UH-Chevron Energy Fellowship program is an exciting opportunity for our graduate students to research the many critical areas that impact the energy industry, our communities and our global competitiveness,” Ramanan Krishnamoortil UH's Vice President for Energy and Innovation says in a statement.

“Today’s students not only recognize the importance of energy, but they are actively driving the push for affordable, reliable, sustainable and secure energy and making choices that clearly indicate that they are meaningfully contributing to the change,” he continues.

“We love that Chevron is sponsoring this group of fellows because it’s a fantastic way for us to get involved with the students who are working on some of the biggest problems we’ll face in society,” Chevron Technology Ventures President Jim Gable adds.

The 2023 UH-Chevron Energy Graduate Fellows are:

Kripa Adhikari, a Ph.D. student in the Department of Civil and Environmental Engineering in the Cullen College of Engineering. Her work focuses on thermal regulation in enhanced geothermal systems. She currently works under the mentorship of Professor Kalyana Babu Nakshatrala and previously worked as a civil engineer with the Nepal Reconstruction Authority.

Aparajita Datta, a researcher at UH Energy and a Ph.D. candidate in the Department of Political Science. Her work focuses on the federal Low-Income Home Energy Assistance Program (LIHEAP), a redistributive welfare policy designed to help households pay their energy bills. She holds a bachelor’s degree in computer science and engineering from the University of Petroleum and Energy Studies in India, and master’s degrees in energy management and public policy from UH. She also recently worked on a paper for UH about transportation emissions.

Chirag Goel, a Ph.D. student in materials science and engineering at UH. His work focuses on using High Temperature Superconductors (HTS) to optimize manufacturing processes, which he says can help achieve carbon-free economies by 2050. The work has uses in renewable energy generation, electric power transmission and advanced scientific applications.

Meghana Idamakanti, a third-year Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Her work focuses on using electrically heated steam methane for cleaner hydrogen production. She received her bachelor’s degree in chemical engineering from Jawaharlal Nehru Technological University in India in 2020 and previously worked as a process engineering intern at Glochem Industries in India.

Erin Picton, an environmental engineering Ph.D. student in the Shaffer Lab at UH. Her work focuses on ways to increase the sustainability of lithium processing and reducing wasted water and energy. “I love the idea of taking waste and turning it into value,” she said in a statement. She has previously worked in collaboration with MIT and Greentown Labs, as chief sustainability officer of a Houston-based desalination startup; and as a visiting graduate researcher at Argonne National Lab and at INSA in Lyon, France.

Mohamad Sarhan, a Ph.D. student and a teaching assistant in the Department of Petroleum Engineering. His work focuses on seasonal hydrogen storage and the stability of storage candidates during hydrogen cycling. He holds a bachelor’s degree and a master’s degree in petroleum engineering from Cairo University

Swapnil Sharma, a Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. His work has been funded by the Department of Energy and focuses on thermal modeling of large-scale liquid hydrogen storage tanks. He works with Professor Vemuri Balakotaiah. He holds bachelor's and master’s degrees in chemical engineering from the Indian Institute of Technology (IIT). He also developed one of the world’s highest fiber-count optical fiber cables while working in India and founded CovRelief, which helped millions of Indians find resources about hospital beds, oxygen suppliers and more during the pandemic.

Larkin Spires, who's working on her doctoral research in the Department of Earth and Atmospheric Sciences in the College of Natural Sciences and Mathematics. Her work focuses on a semi-empirical Brown and Korringa model for fluid substitution and the ties between geophysics and mathematics. She works under Professor John Castagna and holds a bachelor’s degree in math from Louisiana State University and a master’s degree in geophysics from UH.

Earlier this month Evolve Houston also announced its first-ever cohort of 13 microgrant recipients, whose work aims to make EVs and charging infrastructure more accessible in some of the city's more underserved neighborhoods.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Danish renewable company’s largest solar project to power Texas grid, preserve prairie habitat

seeds planted

The largest solar project in the global portfolio of Danish renewable energy company Ørsted is now supplying power to the Electric Reliability Council of Texas (ERCOT) grid.

Ørsted, which maintains offices in Houston and Austin, just flipped the switch on its 468-megawatt Mockingbird Solar Center in Lamar County, which is northeast of Dallas-Fort Worth and directly south of the Texas-Oklahoma border. The $500 million project can produce enough power for 80,000 homes and businesses.

ERCOT provides power to more than 25 million Texas customers, representing 90 percent of the state’s electric load.

In conjunction with the solar project, Ørsted donated 953 acres to The Nature Conservancy to establish the Smiley Meadow Preserve. This area, adjacent to the Mockingbird facility, protects a tallgrass prairie habitat featuring more than 400 species of grasses and wildflowers. Accounting for land already owned by the conservancy, Smiley Meadow exceeds 1,000 acres.

“Through the power of partnership, Ørsted has helped The Nature Conservancy protect an irreplaceable landscape that might otherwise have been lost to development,” Suzanne Scott, The Nature Conservancy’s Texas state director, says in a news release.

Mockingbird Solar Center is part of Ørsted’s $20 billion investment in U.S. energy generation. With this project now online, Ørsted owns a portfolio of more than six gigawatts of onshore wind, solar, and battery storage projects that either are operating or are being built.

Fueling the future: Houston expert on how to build a workforce to meet America’s growing energy demands

guest column

U.S. energy consumption is projected to rise nearly 20 percent over the next decade — driven by advancements like AI, increasing electrification, and the growing demand for electric vehicles. While attention often centers on the technologies that generate power, the driver behind this transformation is the skilled workforce, which comprises men and women dedicated to enabling the nation's growth. Ensuring a steady supply of qualified workers is imperative for meeting the energy demands of the coming decade.

Developing this talent pipeline starts with a commitment to education. As the energy landscape evolves rapidly, educators play a crucial role in equipping the next generation with the skills to embrace new technologies and adapt to changing industry demands. This commitment to education is central to the Energy Education Foundation's (EEF) mission. It's also a cornerstone of EEF partner and board member, Coterra Energy's, efforts to be recognized as a leader in energy education.

At a recent Energy Education Exchange, hosted by Coterra and EEF, in collaboration with industry partners such as the American Petroleum Institute (API) and the Consumer Energy Alliance, over 50 educators and industry leaders gathered in Houston to address this need.

During the three-day event, educators, administrators, and industry professionals were immersed in the many facets of the oil and gas industry, learning best practices for incorporating energy education into their programs.

Educators experienced an in-depth tour of the San Jacinto College Center for Petrochemical, Energy, and Technology. As the largest petrochemical training facility in the Gulf Coast region, the center offered a unique look at industry-standard equipment, including a multifunctional glass pilot plant lab, a glycol distillation unit, and 35 specialized training labs. Participants engaged in demonstrations led by faculty and students, exploring circuits, on-campus refineries, and advanced machinery — essential experiences that bring classroom lessons to life.

The event also highlighted efforts at the high school level, exemplified by a presentation and tour at Energy Institute High School in Houston's historic Third Ward. The Institute showcased how project-based learning, robotics, and hands-on fabrication labs are shaping students' skills for the energy sector. The high school's mission aligns perfectly with EEF’s goals: sparking interest in energy among younger students, developing their skills, and paving a pathway toward lifelong careers in the industry.

API's "Lights On" reception concluded the first day, promoting networking among educators and industry professionals. By facilitating these connections, we are ensuring that educators learn about energy careers and establish ongoing relationships that can translate into opportunities for their students.

Keynotes throughout the exchange included Peter Beard, Senior Vice President of the Greater Houston Partnership, and Chris Menefee, President of Unit Drilling Company, who further emphasized the critical need for workforce development. Beard noted, "As our economy grows, we must ensure we have the electrons and the workforce to support that growth." He stressed that aligning skills with job requirements is more than just matching credentials; it's about upskilling and offering real career mobility.

Menefee echoed this sentiment, acknowledging the pressures on educators to prepare students for an ever-changing job market. He underscored his company's commitment to "quality over quantity" in hiring, prioritizing well-trained individuals, and emphasizing the value of strong foundational skills, which begin in the classroom, especially career and technology classrooms.

The Energy Day Festival in Houston provided an additional opportunity for educators and administrators to engage directly with the industry. Thousands attended, visiting booths set up by companies, trade groups, and educational institutions. EEF's own Mobile Energy Learning Units offered interactive exhibits designed to teach students of all ages about energy and career opportunities. The Units appearance at Energy Day was made possible by the American Petroleum Institute.

Looking forward, the U.S. must expand opportunities for the next generation of energy workers and provide educators with the necessary resources. The Energy Education Exchange is a significant step forward, but one initiative alone cannot shape an entire workforce. All stakeholders involved must invest in tools, training, and programs that empower educators and provide opportunities for students. As Domestic Policy Advisor Neera Tanden recently stated, "Apprenticeships are essential for advancing the economy and building critical skills."

It's time for a broader approach to ensure that the U.S. meets energy demands and leads the world in innovation and education. At the Energy Education Foundation, we are proud to be at the forefront of this mission, working alongside Coterra and other partners. By empowering educators, we empower the next generation—one that will fuel our nation's future. Together, we can build a workforce ready for the challenges ahead.

———

Kristen Barley is the executive director of the Energy Education Foundation, an organization dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.

Houston to host cleantech collaboration with delegation from Belgium

this week

A delegation of nine startups from Antwerp, Belgium, along with industry experts will visit Houston from December 2 through December 6, which will include The Greater Houston Partnership, Greentown Labs, The Ion, and The Cannon.

The delegation will represent cleantech, sustainable chemistry, and energy tech sectors to engage with Houston’s energy transition ecosystem and identify collaboration and investment opportunities.

Houston-based energy tech-oriented companies will be invited to the pitching event for Antwerp and Houston Cleantech Entrepreneurs from 2 to 5 pm on December 3 at The Ion. Interested entrepreneurs can register at this link.

Antwerp and Houston are considered two of the world's largest petrochemical hubs, and also part of the leading innovators in the cleantech, sustainable chemistry, and energy tech sectors. The event will be organized by the Port of Antwerp-Bruges, BlueChem (an Antwerp-based sustainable chemistry incubator), the city of Antwerp, and Flanders Investment and Trade.

“Antwerp and Houston are known for their ports and petrochemical industries, but fewer people realize the remarkable cleantech, sustainable chemistry, and energytech ecosystems that have emerged around these hubs,” Nathalie Mathys, head of office at FIT Houston, says in a news release.

The Port of Antwerp-Bruges is known for innovating new technologies, which includes 5G, digital twins, artificial intelligence, drones, and advanced sensors. Antwerp has over 350 startups and nine incubators and accelerators.

“This delegation visit highlights the potential for collaboration between two of the most dynamic regions in these fields, paving the way for a cleaner, more sustainable future,” adds Mathys.