grants granted

3 Houston energy projects land $17.4M in federal funding for early-stage research

The projects are among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management. Photo courtesy of University of Houston

Three projects from the University of Houston have been awarded funds from the U.S. Department of Energy for research on decarbonization and emissions.

The projects are among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management (FECM).

“These three projects show the relevance and quality of the research at UH and our commitment to making a meaningful impact by addressing society’s needs and challenges by doing critical work that impacts the real world,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a statement. “The success of these project could attract investment, create jobs, produce clean energy, save costs, reduce carbon emissions, and benefit not only the greater Houston area, but the Gulf Coast and beyond.”

The projects were selected under FECM’s University Training and Research program, which aims to support "research and development opportunities for traditionally underrepresented communities and tap into the innovative and diverse thinking of student researchers," according to an announcement from the DOE.

Here are the projects from UH and their funding amounts:

A Comprehensive Roadmap for Repurposing Offshore Infrastructure for Clean Energy Projects in the Gulf of Mexico, $749,992 — Led by Ram Seetharam, UH Energy program officer, this project looks at ways to prolong the life of platforms, wells and pipelines in the Gulf Coast and will create a plan "covering technical, social, and regulatory aspects, as well as available resources," according to UH.

Houston Hydrogen Transportation Pilot, $750,000— Led by Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen, and managed by Joe Powell, this project will demonstrate the potential for a hydrogen refueling pilot in Houston. The first phase will create a system to optimize hydrogen and the second will create a workforce training network. The project is in collaboration with Prairie View A&M University.

Synergizing Minority-Serving Institution Partnerships for Carbon-Negative Geologic Hydrogen Production, $1.5 million — This project is in collaboration with Stanford Doerr School of Sustainability and Texas Tech. The project will create a visiting scholars program for students from UH and TTU, who will spend one month per year at Stanford for three years. While in the program, students will focus on creating carbon-negative hydrogen from rocks beneath the Earth's surface. Kyung Jae Lee, associate professor in the Department of Petroleum Engineering at UH, is working alongside colleagues at TTU and Stanford on this project.

Other projects in the group come from the University of Texas at El Paso, New Mexico Institute of Mining and Technology, Tennessee State University, North Carolina Agricultural and Technical State University, Duke University and more.

Last year the DOE also awarded $2 million to Harris and Montgomery counties for projects that improve energy efficiency and infrastructure in the region. Click here to read about those projects.

The DOE also granted more than $10 million in funding to four carbon capture projects with ties to Houston last summer.

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News