The ExxonMobil Foundation has invested more than $17 million in the Open Doors Project. Photo via Khan Academy

The ExxonMobil Foundation announced they are collaborating with the Khan Academy on the Open Doors Project, which aims to bring free math and science courses and teacher guides to Texas in a larger goal to inspire new STEM leaders.

The Open Doors Project will be the largest single curriculum project for Khan Academy, and will reach schools in Houston.

“Our main goal with this program is to meet the needs of Texas teachers and students,” Sal Khan, founder and CEO of Khan Academy, says in a news release. “We’re grateful for the ExxonMobil Foundation’s vision and support for developing courses and teacher guides that will deliver world-class math and science resources to students and teachers when and where they need it.”

The ExxonMobil Foundation is providing support for the creation of Texas Essential Knowledge and Skills (TEKS)-aligned math and science courses for 3-12 grades through the Open Doors Project. These courses will make it easier to align with the non-profit Khan Academy’s vision of providing free “world-class education” in their classrooms.

The program will include structured lesson plans and instructional guidance that are adaptable for students' various learning styles to help reach “mastery” level of multiple STEM topics. The first round of courses will begin on June 30 with additional courses to come in 2025 and 2026.

The ExxonMobil Foundation has invested more than $17 million in the Open Doors Project, and offers additional support through the Khan Academy Districts to primary and secondary schools in areas where ExxonMobil operates, which includes Houston, Western Texas and the Gulf Coast. Khan Academy is available in large institutions like Kipp and Houston Independent School District, which uses the academy as part of its college readiness program.

“We’re committed to addressing the gap in STEM education,” Alvin Abraham, president of the ExxonMobil Foundation, says in a news release. “With Khan Academy’s help, we can empower teachers to work with students to master the STEM curriculum and take their knowledge into careers that can change the world.”

Despite making up more than 57 percent of the workforce, women are still significantly outnumbered by men in STEM professions. The SUPERGirls Shine Foundation is hoping to change that in Houston and beyond. Photo via htxenergytransition.org

Houston organization strives for equity for energy transition for young women in STEM

the view from heti

STEM occupations account for nearly 7 percent of all U.S. occupations, however, according to the Equal Employment Opportunity Commission, women make up only 27 percent of STEM workers. Studies continue to show that between the ages 8 and 14, girls’ confidence levels drop by 30 percent and by the time they reach middle school, they completely lack confidence and self-esteem to pursue science, technology, engineering and mathematics.

Loretta Williams Gurnell is working to change the narrative for Houston students.

In 2016, Gurnell established SUPERGirls Shine Foundation, which is a Houston-based nonprofit organization that is focused on providing underserved girls with the opportunity and resources to succeed in STEM. By providing a strong STEM foundation, the organization equips girls with the tools to excel in professions that traditionally have low female and diverse representation.

In addition, the organization focuses on closing the gender gap in STEM, noting that their goal is to increase the number of girls in STEM classes, degrees and careers by 25 percent by the year 2025. Despite making up more than 57 percent of the workforce, women are still significantly outnumbered by men in STEM professions.

On a yearly basis, SUPERGirls Shine Foundation awards graduating high school seniors and collegiate ambassadors up to $10,000 dollars to close the financial gaps for college degrees. The foundation offers internships for college students and recent graduates to bring awareness, access and equity for more women and girls from underserved communities in STEM, innovation and leadership initiatives.

Through their 40/40 Mentorship Program, the foundation matches high-level industry leaders to grades 8th – 12th to provide skill-building and networking opportunities. The SUPERGirls Collegiate Ambassador Membership Program serves as a network for college students and recent graduates seeking community, careers and access to industry experts and mentors in STEM.

Learn more about Greentown Labs startup SUPERGirls Shine Foundation and how the organization is providing underserved girls with the opportunity and resources to succeed in STEM.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Engie signs deal to supply wind power for Texas data center

wind deal

Houston-based Engie North America, which specializes in generating low-carbon power, has sealed a preliminary deal to supply wind power to a Cipher Mining data center in Texas.

Under the tentative agreement, Cipher could buy as much as 300 megawatts of clean energy from one of Engie’s wind projects. The financial terms of the deal weren’t disclosed.

Cipher Mining develops and operates large data centers for cryptocurrency mining and high-performance computing.

In November, New York City-based Cipher said it bought a 250-acre site in West Texas for a data center with up to 100 megawatts of capacity. Cipher paid $4.1 million for the property.

“By pairing the data center with renewable energy, this strategic collaboration supports the use of surplus energy during periods of excess generation, while enhancing grid stability and reliability,” Engie said in a news release about the Cipher agreement.

The Engie-Cipher deal comes amid the need for more power in Texas due to several factors. The U.S. Energy Information Administration reported in October that data centers and cryptocurrency mining are driving up demand for power in the Lone Star State. Population growth is also putting pressure on the state’s energy supply.

Last year, Engie added 4.2 gigawatts of renewable energy capacity worldwide, bringing the total capacity to 46 gigawatts as of December 31. Also last year, Engie signed a new contract with Meta (Facebook's owner) and expanded its partnership with Google in the U.S. and Belgium.

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”