future workforce

ExxonMobil invests $17M with nonprofit to fund more STEM instruction, resources

The ExxonMobil Foundation has invested more than $17 million in the Open Doors Project. Photo via Khan Academy

The ExxonMobil Foundation announced they are collaborating with the Khan Academy on the Open Doors Project, which aims to bring free math and science courses and teacher guides to Texas in a larger goal to inspire new STEM leaders.

The Open Doors Project will be the largest single curriculum project for Khan Academy, and will reach schools in Houston.

“Our main goal with this program is to meet the needs of Texas teachers and students,” Sal Khan, founder and CEO of Khan Academy, says in a news release. “We’re grateful for the ExxonMobil Foundation’s vision and support for developing courses and teacher guides that will deliver world-class math and science resources to students and teachers when and where they need it.”

The ExxonMobil Foundation is providing support for the creation of Texas Essential Knowledge and Skills (TEKS)-aligned math and science courses for 3-12 grades through the Open Doors Project. These courses will make it easier to align with the non-profit Khan Academy’s vision of providing free “world-class education” in their classrooms.

The program will include structured lesson plans and instructional guidance that are adaptable for students' various learning styles to help reach “mastery” level of multiple STEM topics. The first round of courses will begin on June 30 with additional courses to come in 2025 and 2026.

The ExxonMobil Foundation has invested more than $17 million in the Open Doors Project, and offers additional support through the Khan Academy Districts to primary and secondary schools in areas where ExxonMobil operates, which includes Houston, Western Texas and the Gulf Coast. Khan Academy is available in large institutions like Kipp and Houston Independent School District, which uses the academy as part of its college readiness program.

“We’re committed to addressing the gap in STEM education,” Alvin Abraham, president of the ExxonMobil Foundation, says in a news release. “With Khan Academy’s help, we can empower teachers to work with students to master the STEM curriculum and take their knowledge into careers that can change the world.”

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News