The Energy Education Foundation will offer EnergyXP to middle schoolers this fall. Photo courtesy Energy Education Foundation.

In today’s ever-changing digital world, the way we teach kids about science is rapidly transforming. Energy education, specifically, is expanding and contributing to the STEM landscape significantly. Helping children understand where energy comes from, how we use it in our everyday lives and how it affects our planet is critical to sparking early interest in STEM learning and inspiring potential careers in the energy industry.

Thanks to new technology and the power of artificial intelligence, we are better equipped to explain these complex ideas in fun, interactive and easy-to-understand ways.

The Role of Educational Technology in Classrooms

Traditional teaching methods can struggle to connect scientific concepts to students’ everyday experiences. A 2023 study found that technology not only makes learning more engaging and enjoyable but also encourages students to invest more effort in their studies over time.

Tools like tablets, smartboards, interactive simulations and gamified learning apps allow students to visualize energy systems, conduct virtual experiments and explore dynamic models that demonstrate how energy flows through different systems.

For example, virtual labs allow students to simulate the installation of solar panels or observe how wind turbines convert kinetic energy into electricity, all without leaving the classroom. These digital tools transform abstract theories into concrete, hands-on experiences, making it easier for students to understand and retain core principles of energy science.

Gamified learning has also become increasingly popular in K–12 classrooms because it engages students by meeting them where they are through interactive, game-like experiences. By incorporating familiar motivators such as points, levels, rewards and challenges, it taps into the same engagement techniques students encounter in video games and apps outside the classroom.

In an era when competition for students’ attention is higher than ever, more educators are turning to gamification because it works; it transforms passive learning into an active, student-centered experience, helping learners stay focused and motivated.

When applied to energy education, gamification can be especially powerful. Educational games that task students with managing a virtual city, designing energy-efficient systems or balancing an energy budget help build valuable real-world skills like problem-solving and systems thinking. Most importantly, they keep students engaged and make learning about energy meaningful.

Equity and Access in Educational Technology

While technology and AI offer immense potential to transform energy education, it is crucial to address the digital divide that exists across different schools and communities. Not all students have equal access to the devices, software or reliable internet connectivity needed to benefit from these innovative learning tools.

Bridging this gap requires collaborative efforts through public-private partnerships, targeted grants and community-driven educational outreach programs. These initiatives play a vital role in ensuring that every student, regardless of socioeconomic background or geographic location, has the opportunity to engage with tech-driven energy education.

Organizations like the Energy Education Foundation are taking meaningful steps in this direction. This fall, the nonprofit is launching EnergyXP, an innovative, mobile STEM learning experience designed for middle school students. The program offers 16 interactive, hands-on, and digital activities aligned with the Next Generation Science Standards, and is provided free of charge to participating schools. Through EnergyXP, students explore diverse energy concepts while building curiosity, collaboration and critical thinking skills. The program links classroom learning to real-world applications, helping students see the role of energy in their daily lives and sparking interest in STEM careers.

Other promising initiatives such as community tech hubs, low connectivity learning platforms, school-device loan programs and subsidized broadband options also support increased access to digital education. In Harris County, the Commissioners Court recently voted unanimously to create the Harris County Broadband Task Force with the aim of expanding internet access and affordability and addressing the growing digital literacy demands in the region. Additionally, Compudopt, a partner of the Energy Education Foundation, is another valuable resource for the Houston-area community. Its programs work to eliminate barriers to computer access, build technical and digital literacy skills, offer no- or low-cost high-speed internet options and support the long-term success of youth and their communities.

By supporting programs and organizations that decrease the digital divide, we can ensure that all students have access to engaging, technology-driven energy education. Providing young learners with the tools to explore, innovate and connect with the energy systems that power their world is key to building a more diverse, inclusive energy workforce for the future.

AI is Transforming the Energy Landscape

Students who utilize technology and AI in the classroom will be better equipped for the energy jobs of the future. As the energy sector continues to evolve, AI is becoming an essential tool for addressing complex challenges from optimizing energy production and distribution to accelerating innovation and improving system reliability.

By exposing students to AI-driven learning experiences early on, we can help them build the skills needed to understand and contribute to emerging technologies such as smart grids, predictive maintenance, renewable energy forecasting and energy storage optimization. These technologies are already shaping the future of how we produce, store and consume energy.

Through hands-on engagement with AI-powered simulations, data analysis tools and problem-solving scenarios, students are learning how to lead in a tech-driven, sustainable energy future.

As the world transitions toward more technology-driven energy systems, the importance of early, engaging and equitable energy education has never been more critical. Through the integration of technology, gamified learning and AI in the classroom, we can make science more accessible and empower students with the knowledge and skills they need to shape the future. Programs like EnergyXP demonstrate how innovation in education can bridge opportunity gaps, spark curiosity and lay the groundwork for a more inclusive and forward-thinking energy workforce. The investments we make in today’s classrooms will determine the energy leaders of tomorrow.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


The Energy Education Foundation will offer EnergyXP to middle schoolers this fall. Photo courtesy Energy Education Foundation.

Houston nonprofit launches new energy education platform

energy ed

The Energy Education Foundation, a Houston-based nonprofit, will roll out a new app-based education platform just in time for back-to-school season.

Starting this fall, EEF will offer its new EnergyXP platform to students in middle schools and through community and education events across the country. The STEM-focused platform aims to boost exposure to oil and gas concepts and career paths, according to a release from the non-profit.

EnergyXP represents a fully redesigned, interactive version of the foundation's former Mobile Energy Learning Units, which now feature upgraded technology, enhanced curricula and app integration.

“EnergyXP marks the most recent development in our educational initiatives. We aim to inspire students nationwide to explore real-world energy concepts and careers,” Kristen Barley, executive director of the Energy Education Foundation, said in the release. “Our collaborative approach involves strong partnerships with educators, industry experts and local organizations to ensure that our programs are responsive to community needs. By prioritizing equitable access to quality STEM education, we can help build a more inclusive, future-ready energy workforce.”

The new platform offers 16 hands-on and digital STEM activities that introduce a variety of energy concepts through real-world applications while "showcasing the relevance of energy in everyday life," according to the release.

EEF will host two virtual sneak peeks of the platform on Aug. 7 and Aug. 8. Register here.

Texas has the largest installed wind capacity in the United States. Photo by Sam LaRussa on Unsplash

Expert: Debunking the myth that Texas doesn't care about renewable energy

Guest Column

When most people think about Texas, wind turbines and solar panels may not be the first images that come to mind. But in reality, the state now leads the nation in both wind-powered electricity generation and utility-scale solar capacity. In 2024 alone, Texas added approximately 9,700 megawatts of solar and 4,374 megawatts of battery storage, outpacing all other energy sources in new generation capacity that year. So what’s driving Texas’ rapid rise as the renewable energy capital of the United States?

Leader in wind energy

Texas has been a national leader in wind energy for more than a decade, thanks to its vast open landscapes and consistent wind conditions, particularly in regions like West Texas and the Panhandle. These ideal geographic features have enabled the development of massive wind farms, giving Texas the largest installed wind capacity in the United States. Wind energy also plays a strategic role in balancing the grid and complements solar energy well, as it often peaks at night when solar output drops.

Battery storage growth

Increasing battery storage capacity is unlocking more potential from solar and wind. When intermittent energy sources like wind and solar go offline, batteries release stored electricity and provide stability to the Electric Reliability Council of Texas system. Excluding California, Texas has more battery storage than the rest of the United States combined, accounting for over 32% of all the capacity installed nationwide.

Solar electricity generation and utility-scale batteries within ERCOT power grid set records in summer 2024. Between June 1 and August 31, solar contributed nearly 25% of total power demand during mid-day hours. In the evening, as demand stayed high but solar output declined, battery discharges successfully filled the gap. Battery storage solutions are now a core element of ERCOT’s future capacity and demand planning.

Interest in creating a hydrogen economy

Texas is well positioned to become a national hub in the hydrogen economy. The state has everything needed to lead in this emerging space with low-cost natural gas, abundant and growing low carbon electricity, geology well suited for hydrogen and carbon storage, mature hydrogen demand centers, existing hydrogen pipelines, established port infrastructure and more. The state already has an existing hydrogen market with two-thirds of the country’s hydrogen transport infrastructure.

In 2023, the Texas Legislature created the Texas Hydrogen Production Policy Council, which found that:

  • Hydrogen could represent a grid-scale energy storage solution that can help support the increased development of renewable electricity from wind and solar. Renewable electricity that is converted to hydrogen can improve overall grid reliability, resilience and dispatchability.
  • The development of the hydrogen industry, along with its supporting infrastructure and its downstream markets within Texas, could attract billions of dollars of investment. This development may create hundreds of thousands of jobs - especially with younger generations who are passionate about climate science - and greatly boost the Texas economy.
  • Hydrogen supports the current energy economy in Texas as a critical component to both conventional refining and the growing production of new biofuels (such as renewable diesel and sustainable aviation fuel) within the state.

Legislative action and pressure to reduce carbon emissions

Texas has also seen key legislative actions and policies that have supported the growth of renewable energy in Texas. During the most recent legislative session, lawmakers decided that The Texas Energy Fund, a low-interest loan program aimed at encouraging companies to build more power infrastructure, will receive an additional $5 billion on top of the $5 billion lawmakers approved in 2023. Of that amount, $1.8 billion is earmarked to strengthen existing backup generators, which must be powered by a combination of solar, battery storage and natural gas. These funds signal growing institutional support for a diversified and more resilient energy grid.

Furthermore, there is growing pressure from investors, regulators and consumers to reduce carbon emissions, and as a result, private equity firms in the oil and gas sector are diversifying their portfolios to include wind, solar, battery storage and carbon capture projects. In 2022, private equity investment in renewable energy and clean technology surged to a record-high $26 billion.

The future of the renewable energy workforce

With renewable energy jobs projected to grow to 38 million globally by 2030, the sector is poised to be one of the most promising career landscapes of the future. Given that young people today are increasingly environmentally conscious, there is a powerful opportunity to engage students early and help them see how their values align with meaningful, purpose-driven careers in clean energy. Organizations like the Energy Education Foundation play a vital role in this effort by providing accessible, high-quality resources that bridge the gap between energy literacy and real-world impact. The nonprofit employs comprehensive, science-based educational initiatives to help students and educators explore complex energy topics through clear explanations and engaging learning tools, laying a strong foundation for informed, future-ready learners.

STEM and AI education, which are reshaping how young people think, build, and solve problems, provide a natural gateway into the renewable energy field. From robotics and coding to climate modeling and sustainable engineering, these learning experiences equip students with the critical skills and mindsets needed to thrive in a rapidly evolving energy economy. By investing in engaging, future-focused learning environments now and through leveraging trusted educational partners, like the Energy Education Foundation, we can help ensure that the next generation of learners are not just prepared to enter the clean energy workforce but are empowered to lead it.

With its rapidly growing wind, solar, battery and hydrogen sectors, Texas is redefining its energy identity. To sustain this momentum, the state must continue aligning education, policy, and innovation—not only to meet the energy demands of tomorrow, but to inspire and equip the next generation to lead the way toward a more sustainable, resilient and inclusive energy future.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


The ExxonMobil Foundation has invested more than $17 million in the Open Doors Project. Photo via Khan Academy

ExxonMobil invests $17M with nonprofit to fund more STEM instruction, resources

future workforce

The ExxonMobil Foundation announced they are collaborating with the Khan Academy on the Open Doors Project, which aims to bring free math and science courses and teacher guides to Texas in a larger goal to inspire new STEM leaders.

The Open Doors Project will be the largest single curriculum project for Khan Academy, and will reach schools in Houston.

“Our main goal with this program is to meet the needs of Texas teachers and students,” Sal Khan, founder and CEO of Khan Academy, says in a news release. “We’re grateful for the ExxonMobil Foundation’s vision and support for developing courses and teacher guides that will deliver world-class math and science resources to students and teachers when and where they need it.”

The ExxonMobil Foundation is providing support for the creation of Texas Essential Knowledge and Skills (TEKS)-aligned math and science courses for 3-12 grades through the Open Doors Project. These courses will make it easier to align with the non-profit Khan Academy’s vision of providing free “world-class education” in their classrooms.

The program will include structured lesson plans and instructional guidance that are adaptable for students' various learning styles to help reach “mastery” level of multiple STEM topics. The first round of courses will begin on June 30 with additional courses to come in 2025 and 2026.

The ExxonMobil Foundation has invested more than $17 million in the Open Doors Project, and offers additional support through the Khan Academy Districts to primary and secondary schools in areas where ExxonMobil operates, which includes Houston, Western Texas and the Gulf Coast. Khan Academy is available in large institutions like Kipp and Houston Independent School District, which uses the academy as part of its college readiness program.

“We’re committed to addressing the gap in STEM education,” Alvin Abraham, president of the ExxonMobil Foundation, says in a news release. “With Khan Academy’s help, we can empower teachers to work with students to master the STEM curriculum and take their knowledge into careers that can change the world.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Reliant partners to expand Texas virtual power plant and home battery use

energy incentives

Houston’s Reliant and San Francisco tech company GoodLeap are teaming up to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant (VPP) network in Texas.

Through the new partnership, eligible Reliant customers can either lease a battery or enter into a power purchase agreement with GoodLeap through its GoodGrid program, which incentivises users by offering monthly performance-based rewards for contributing stored power to the grid. Through the Reliant GoodLeap VPP Battery Program, customers will start earning $40 per month in rewards from GoodLeap.

“These incentives highlight our commitment to making homeowner battery adoption more accessible, effectively offsetting the cost of the battery and making the upgrade a no-cost addition to their homes,” Dan Lotano, COO at GoodLeap, said in a news release.“We’re proud to work with NRG to unlock the next frontier in distributed energy in Texas. This marks an important step in GoodLeap reaching our nationwide goal of 1.5 GW of managed distributed energy over the next five years.”

Other features of the program include power outage plans, with battery reserves set aside for outage events. The plan also intelligently manages the battery without homeowner interaction.

The partnership comes as Reliant’s parent company, NRG, continues to scale its VPP program. Last year, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an effort to help households manage and lower their energy costs.

“We started building our VPP with smart thermostats across Texas, and now this partnership with GoodLeap brings home battery storage into our platform,” Mark Parsons, senior vice president and head of Texas energy at NRG, said in a the release. “Each time we add new devices, we’re enabling Texans to unlock new value from their homes, earn rewards and help build a more resilient grid for everyone. This is about giving customers the opportunity to actively participate in the energy transition and receive tangible benefits for themselves and their communities.

How Corrolytics is tackling industrial corrosion and cutting emissions

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

M&A activity

Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak have completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

JET is one of the largest and most popular fuel retailers in Germany and Austria with a rapidly growing EV charging network, according to a news release. It also operates approximately 970 service stations, convenience stores and car washes.

“We are delighted to complete this acquisition and to partner with Stonepeak and Phillips 66 to take JET to the next level,” Javed Ahmed, managing partner of Energy Equation Partners, said in a news release. “This investment reflects EEP’s commitment to investing in established players in the energy sector who have the potential to make a meaningful impact on the energy transition, and we are excited to work alongside the entire JET team, including its dedicated service station operators, to realize this vision.”

The deal values JET at approximately $2.8 billion. Phillips 66 will retain a 35 percent non-operated interest in JET and received about $1.6 billion in pre-tax proceeds.

“Under Phillips 66’s ownership, JET has grown into one of the largest fuel retailers in Germany and Austria," Anthony Borreca, senior managing director and co-head of energy at Stonepeak, added in a news release. "We are excited to join forces with them, as well as Javed and the EEP team, who have long-standing experience investing in and operating retail fuel distribution and logistics globally, to support the next phase of JET’s growth.”