The Energy Education Foundation will offer EnergyXP to middle schoolers this fall. Photo courtesy Energy Education Foundation.

In today’s ever-changing digital world, the way we teach kids about science is rapidly transforming. Energy education, specifically, is expanding and contributing to the STEM landscape significantly. Helping children understand where energy comes from, how we use it in our everyday lives and how it affects our planet is critical to sparking early interest in STEM learning and inspiring potential careers in the energy industry.

Thanks to new technology and the power of artificial intelligence, we are better equipped to explain these complex ideas in fun, interactive and easy-to-understand ways.

The Role of Educational Technology in Classrooms

Traditional teaching methods can struggle to connect scientific concepts to students’ everyday experiences. A 2023 study found that technology not only makes learning more engaging and enjoyable but also encourages students to invest more effort in their studies over time.

Tools like tablets, smartboards, interactive simulations and gamified learning apps allow students to visualize energy systems, conduct virtual experiments and explore dynamic models that demonstrate how energy flows through different systems.

For example, virtual labs allow students to simulate the installation of solar panels or observe how wind turbines convert kinetic energy into electricity, all without leaving the classroom. These digital tools transform abstract theories into concrete, hands-on experiences, making it easier for students to understand and retain core principles of energy science.

Gamified learning has also become increasingly popular in K–12 classrooms because it engages students by meeting them where they are through interactive, game-like experiences. By incorporating familiar motivators such as points, levels, rewards and challenges, it taps into the same engagement techniques students encounter in video games and apps outside the classroom.

In an era when competition for students’ attention is higher than ever, more educators are turning to gamification because it works; it transforms passive learning into an active, student-centered experience, helping learners stay focused and motivated.

When applied to energy education, gamification can be especially powerful. Educational games that task students with managing a virtual city, designing energy-efficient systems or balancing an energy budget help build valuable real-world skills like problem-solving and systems thinking. Most importantly, they keep students engaged and make learning about energy meaningful.

Equity and Access in Educational Technology

While technology and AI offer immense potential to transform energy education, it is crucial to address the digital divide that exists across different schools and communities. Not all students have equal access to the devices, software or reliable internet connectivity needed to benefit from these innovative learning tools.

Bridging this gap requires collaborative efforts through public-private partnerships, targeted grants and community-driven educational outreach programs. These initiatives play a vital role in ensuring that every student, regardless of socioeconomic background or geographic location, has the opportunity to engage with tech-driven energy education.

Organizations like the Energy Education Foundation are taking meaningful steps in this direction. This fall, the nonprofit is launching EnergyXP, an innovative, mobile STEM learning experience designed for middle school students. The program offers 16 interactive, hands-on, and digital activities aligned with the Next Generation Science Standards, and is provided free of charge to participating schools. Through EnergyXP, students explore diverse energy concepts while building curiosity, collaboration and critical thinking skills. The program links classroom learning to real-world applications, helping students see the role of energy in their daily lives and sparking interest in STEM careers.

Other promising initiatives such as community tech hubs, low connectivity learning platforms, school-device loan programs and subsidized broadband options also support increased access to digital education. In Harris County, the Commissioners Court recently voted unanimously to create the Harris County Broadband Task Force with the aim of expanding internet access and affordability and addressing the growing digital literacy demands in the region. Additionally, Compudopt, a partner of the Energy Education Foundation, is another valuable resource for the Houston-area community. Its programs work to eliminate barriers to computer access, build technical and digital literacy skills, offer no- or low-cost high-speed internet options and support the long-term success of youth and their communities.

By supporting programs and organizations that decrease the digital divide, we can ensure that all students have access to engaging, technology-driven energy education. Providing young learners with the tools to explore, innovate and connect with the energy systems that power their world is key to building a more diverse, inclusive energy workforce for the future.

AI is Transforming the Energy Landscape

Students who utilize technology and AI in the classroom will be better equipped for the energy jobs of the future. As the energy sector continues to evolve, AI is becoming an essential tool for addressing complex challenges from optimizing energy production and distribution to accelerating innovation and improving system reliability.

By exposing students to AI-driven learning experiences early on, we can help them build the skills needed to understand and contribute to emerging technologies such as smart grids, predictive maintenance, renewable energy forecasting and energy storage optimization. These technologies are already shaping the future of how we produce, store and consume energy.

Through hands-on engagement with AI-powered simulations, data analysis tools and problem-solving scenarios, students are learning how to lead in a tech-driven, sustainable energy future.

As the world transitions toward more technology-driven energy systems, the importance of early, engaging and equitable energy education has never been more critical. Through the integration of technology, gamified learning and AI in the classroom, we can make science more accessible and empower students with the knowledge and skills they need to shape the future. Programs like EnergyXP demonstrate how innovation in education can bridge opportunity gaps, spark curiosity and lay the groundwork for a more inclusive and forward-thinking energy workforce. The investments we make in today’s classrooms will determine the energy leaders of tomorrow.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


The Energy Education Foundation will offer EnergyXP to middle schoolers this fall. Photo courtesy Energy Education Foundation.

Houston nonprofit launches new energy education platform

energy ed

The Energy Education Foundation, a Houston-based nonprofit, will roll out a new app-based education platform just in time for back-to-school season.

Starting this fall, EEF will offer its new EnergyXP platform to students in middle schools and through community and education events across the country. The STEM-focused platform aims to boost exposure to oil and gas concepts and career paths, according to a release from the non-profit.

EnergyXP represents a fully redesigned, interactive version of the foundation's former Mobile Energy Learning Units, which now feature upgraded technology, enhanced curricula and app integration.

“EnergyXP marks the most recent development in our educational initiatives. We aim to inspire students nationwide to explore real-world energy concepts and careers,” Kristen Barley, executive director of the Energy Education Foundation, said in the release. “Our collaborative approach involves strong partnerships with educators, industry experts and local organizations to ensure that our programs are responsive to community needs. By prioritizing equitable access to quality STEM education, we can help build a more inclusive, future-ready energy workforce.”

The new platform offers 16 hands-on and digital STEM activities that introduce a variety of energy concepts through real-world applications while "showcasing the relevance of energy in everyday life," according to the release.

EEF will host two virtual sneak peeks of the platform on Aug. 7 and Aug. 8. Register here.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”