seeing green

2 Houston startups join Greentown Labs' BIPOC-led accelerator program

From potato-starch-based bioplastics startups to companies developing carbon-coated silicon anodes, here's who's joining Greentown Labs and Browning the Green Space's ACCEL program. Photo via browningthegreenspace.org

Greentown Labs and Browning the Green Space announced the newest cohort for its Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, which works to advance BIPOC-led startups in the climatetech space.

Two Houston companies and one from Austin are among the eight startups to be named to the 2025 group.

“The startups selected for the third ACCEL cohort represent a phenomenal range of energy and climatetech innovations, which underscores our belief that everyone and many solutions must play a role in our community’s collective decarbonization efforts,” Georgina Campbell Flatter, Greentown’s new CEO, said in a release. “We’re proud to welcome these entrepreneurs to our community and eager to see all they’ll achieve throughout the program and beyond!”

Each of the early-stage startups within the cohort will receive $25,000 in non-dilutive grant funding and participate in the year-long program focused on product and technology development, market development, fundraising and management, and team development, according to Greentown. The curriculum is led by VentureWell, a nonprofit with expertise in venture development in climatetech.

The Houston companies include:

  • Carbonext, founded by Olanrewaju Tanimola. The company is leveraging its proprietary, off-the-shelf 3D-graphene technology to develop integrated solutions with carbon-coated silicon anodes to address challenges in the graphite ecosystem, as well as lithium-battery anodes.
  • PLASENE, founded by Sohel Shaikh, Alper Gulludag and Romolo Raciti. The company offers an innovative platform that converts plastic waste into liquid fuel and low-carbon hydrogen through its proprietary catalysts and modular, scalable, pre-engineered units

The remaining six companies are:

  • Inductive Robotics, founded in Austin by Madhav Ayyagari and David Alspaugh. The startup deploys autonomous robots that deliver EV charging directly to parked vehicles in commercial parking facilities, using a subscription-based model.
  • Andros Innovations, founded in Cambridge, Massachusetts by Laron Burrows. The startup has developed a reactor that produces ammonia more cheaply, cleanly and safely than traditional methods do.
  • FAST Metals, founded in Worcester, Massachusetts by Sumedh Gostu and Anthony Staley. It has developed a hydrometallurgical-recovery process capable of extracting iron, aluminum, scandium, titanium, and other rare-earth elements from industrial tailings.
  • Respire Energy, founded in Boston by Dave Hsu, Xiaowei Teng, and Candy Wong. The energy storage startup has developed a safe, low-cost, and long-duration metal-air battery designed for microgrids.
  • Tato Labs, founded in Brooklyn by Mecca McDonald and Mia Dunn. It is developing scalable, innovative, bioplastic products and packaging solutions that leverage potato starch, protect and preserve the natural ecosystem, and minimize plastic waste.
  • Thola, founded in Portland, Maine, by Nneile Nkholise and Lerato Takana. The company provides an on-demand marketplace for commercial-building sustainability and safety management, with a mission to decarbonize old buildings.

ACCEL is supported by the Massachusetts Clean Energy Center (MassCEC), Shell, Equinor, the Growth Capital Division of MassDevelopment, Microsoft and the Barr Foundation.

The accelerator has supported 13 early-stage startups since it was founded in 2023, resulting in $325,000 in grant funding. Houston companies have been represented in each cohort. Click here to see the 2024 cohort and here to see the inaugural 2023 cohort.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News