The seven selected startups will have year-long curated curriculum, incubation at Greentown's two locations, a non-dilutive $25,000 grant, and access to mentors, corporates, and more from both Greentown and BGS's networks. Photo via browningthegreenspace.org

Two organizations have named the seven startup participants for their accelerator that works to advance BIPOC-led startups in the climatetech space.

Greentown Labs and Browning the Green Space named the newest accelerator for the Advancing Climatetech and Clean Energy Leaders Program, or ACCEL. The seven selected startups will have year-long curated curriculum, incubation at Greentown's two locations, a non-dilutive $25,000 grant, and access to mentors, corporates, and more from both Greentown and BGS's networks.

"Building on the momentum and success of our inaugural year, Greentown Labs is proud to welcome this incredible cohort of BIPOC-led startups to Year 2 of ACCEL," Greentown Labs CEO and President Kevin Knobloch says in a news release. "These founders and their teams are developing a dynamic array of much-needed climatetech solutions, and we're privileged to support them on their startup journeys as they advance their technologies and grow their teams."

The 2024 cohort includes:

  • AtmoSpark Technologies, based in Houston, is an atmospheric water generation company with a patented electro-condensation technology, which has a lower energy footprint than that of current water-generation methods.
  • Cambridge, Massachusetts-based Aquasaic is harnessing biology to clean water for planetary and human health.
  • Houston-based Axis Sky Renewablescreates innovative wind solutions, specializing in vertical-axis wind turbines that are less expensive to produce, deploy, and maintain than traditional wind turbines.
  • Carbon Negative Solutions, from Rock Hill, New York, is creating smart-city-ready, carbon-negative concrete products.
  • NYC-based Cellsense develops interactive bio-embellishments that create new possibilities for designers while eliminating microplastics and replacing fossil-fuel-based material at scale.
  • EcoForge, headquartered in Providence, Rhode Island, is a building-material technology company developing affordable, high-performance building materials from local agricultural residues, replacing energy-intensive, fossil-based materials.
  • Boston-based Sankofa Dynamics creates low-cost, eco-friendly solutions for water, air, and energy problems.

The program is supported by the Massachusetts Clean Energy Center,Microsoft's Climate Innovation Fund, Equinor, Barr Foundation.

"These BIPOC-led startups are developing climate technologies that will lead us to a more equitable and sustainable future," MassCEC CEO Dr. Emily Reichert, the former CEO of Greentown, says in the release. "We want ALL climatetech innovators and entrepreneurs to thrive here in Massachusetts. We are proud to support the ACCEL accelerator, created and led by Greentown Labs and Browning the Green Space. The ACCEL program is helping us build a more diverse innovation ecosystem by breaking down barriers and expanding opportunities."

ACCEL was announced in 2022, and the first cohort featured six climatetech startups — two based in Houston.

"Our second year of ACCEL brings together an inspirational and diverse cohort of seven BIPOC-led startups developing tech to accelerate the distribution of climate solutions that address community needs," Browning the Green Space President and Executive Director Kerry Bowie adds. "We are thrilled to continue to strengthen our partnership with Greentown Labs and VentureWell and build on the learnings from the pilot cohort to provide critical support infrastructure for entrepreneurs of color."

The ACCEL program kicks off at an event on March 6 at Greentown's Boston location.

The Houston Ion District Investor Activation Program is open to accredited investors and free to join. Photo via GreentownLabs.com

Greentown Houston announces new investor program to increase equity in climatetech funding

calling all funders

Greentown Labs has announced a new program to address inequity and unavailability of funding for early-stage climatetech startups.

The Houston Ion District Investor Activation Program is supported by a Build to Scale Capital Challenge grant from the U.S. Economic Development Administration, open to accredited investors, and free to join.

Participating investors will have access to curated startup introductions based on preferred stage, industry, check size, and more, plus access to information on startups and investor-specific newsletters featuring Greentown startups invite-only events.

"This program brings early-stage investors from Greater Houston into the fold, offering education on climatetech investing, channeling a pool of capital to young startups, and catalyzing a thriving climatetech investment ecosystem that prioritizes diversity, equity, and inclusion," reads the email announcing the program.

Members will also get networking opportunities with fellow investors and leading climatetech startups, which includes investor roundtables. Sector Pitch Days, and more Educational workshops on climatetech investing run by Vinson & Elkins, and more will be made available. The new initiative is meant “ to strengthen Houston’s energy-transition ecosystem” according to a news release.

In 2023, Greentown Labs helped 87 corporate partners, and collaborated with over 70 Houston startups. Some of their members recently achieved success in their respective fields.

The future of the oil and gas workforce isn't looking too bright when it comes to recruiting, the Wall Street Journal reports. Photo via Getty Images

Report: College enrollment in petroleum programs — including in Texas — sees historic drop

looking forward

Student enrollment in petroleum engineering programs at universities — including Texas schools — has dropped significantly, according to a recent report.

This prospective energy workforce is concerned about job security as the industry moves forward in the energy transition, reports the Wall Street Journal. The number of students enrolled in petroleum engineering programs has decreased to its lowest point in a decade, the WSJ found, breaking the typical cycle, which "ebbed and flowed" alongside the price of oil.

This decline is estimated as a 75 percent drop in enrollment since 2014, Lloyd Heinze, a Texas Tech University professor, tells the WSJ. The article specifies that the University of Texas at Austin has seen a 42 percent decline since its peak enrollment in 2015, and Texas A&M University has dropped 63.3 percent. Both schools' petroleum engineering programs are ranked No. 1 and No. 2, respectively, by U.S. News and World Report. Texas Tech, which ties with the University of Houston at No. 9 on the U.S. News report, has seen a 88.1 percent decline since its peak in 2015. UH data wasn't included in the article.

The article highlights declines at Colorado School of Mines (87.7 percent), Louisiana State University (89 percent), and University of Oklahoma (90 percent) since their peak enrollment in 2015.

A decline in future workforce for the energy industry would directly affect Houston's economy. According to the 2023 Houston Facts report from the Greater Houston Partnership, Houston held 23.8 percent of the nation’s jobs in oil and gas extraction (33,400 of 140,200) 17.0 percent of jobs in oil field services (33,600 of 198,100), and 9.6 percent of jobs in manufacturing of agricultural, construction and mining equipment (20,400 of 212,000), based on data from the U.S. Bureau of Labor Statistics.

Barbara Burger tells the WSJ that new climatetech-focused startups have emerged and become more attractive to both college graduates and current oil and gas workforce. “There’s competition in a way that probably wasn’t there 15 years ago,” she shares.

The lack of college student pipeline paired with the diminishing workforce from emerging companies poses a challenge to incubant energy corporations, many of which have invested in programs at schools to better attract college graduates. The WSJ article points to BP's $4 million fellowship program with U.S. universities announced in February.

Just this week, Baker Hughes granted $100,000 to the University of Houston's Energy Transition Institute, which was founded last year with backing from Shell. In a recent interview with EnergyCapital, Joseph Powell, founding director of UH Energy Transition Institute, explains how the institute was founded to better engage with college students and bring them into the transitioning industry.

"It takes a lot of energy to process chemicals, plastics, and materials in a circular manner," he says. "Developing that workforce of the future means we need the students who want to engage in these efforts and making sure that those opportunities are available across the board to people of all different economic backgrounds in terms of participating in what is going to be just a tremendous growth engine for the future in terms of jobs and opportunities."

Clean energy jobs are already in Texas, and are ripe for the taking, according to a recent SmartAsset report that found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.” While oil and gas positions are still paying top dollar, these clean energy jobs reportedly pay an average of 21 percent more than other jobs.

Greentown Houston is asking its current and potential members what they want in a wet lab. Photo via GreentownLabs.com

Greentown Houston calls for feedback for developing wet lab space

phoning a friend

Greentown Houston has announced it's building a new wet lab facility, and the organization is looking for feedback from its community.

Greentown Labs, which is dual located at their headquarters in Somerville, Massachusetts, and in the Ion District in Houston, has announced earlier this summer that they are building out a wet lab in their Midtown space.

"We have heard from several startups as well as corporate partners in the ecosystem that are looking for wet lab space," says Lara Cottingham, vice president of strategy, policy, and climate impact at Greentown Labs. "Greentown has experience running wet labs from our location in Somerville. We're excited to be able to offer wet lab space to climatetech startups as an additional amenity to the Ion District.

Although Greentown's Boston-area location has wet lab space, Cottingham says the organization is not interested in copying and pasting that same facility. Greentown wants to provide the tools that the Houston ecosystem needs, and that requires getting feedback from its current and potential members.

"We want to announce to the community that this is something we're going to build — but we still need a lot of feedback and input from startups so we can learn what exactly they need or want to see from the wet lab," Cottingham tells InnovationMap. "No two wet labs are the same."

There currently aren't any details available about timeline or specifics of the new facility. Greentown is prioritizing getting feedback from its members and having conversations with potential sponsors and corporate partners.

"Corporate partners are a big part of the ecosystem and the community at Greentown. They can be so many things to our startups — mentors, customers, investors," Cottingham says. "And in this space, they can help us sponsor and financially support the wet lab. We're still fundraising — we have some partners that have committed to funding, but we're still looking for more funding."

In addition to monetary contribution, Cottingham says they are looking for other options as well, from partnerships with equipment providers, hazardous materials management, and more.

Startups that need wet lab space are encouraged to fill out the online form, which will be open through the summer, and potential corporate partners can express their interest online as well.

Greentown Houston opened its doors in 2021 and has since grown to house more than 75 energy and climatetech startups, as well as several accelerators, thanks to support from dozens of corporate partners.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.