looking forward

Report: College enrollment in petroleum programs — including in Texas — sees historic drop

The future of the oil and gas workforce isn't looking too bright when it comes to recruiting, the Wall Street Journal reports. Photo via Getty Images

Student enrollment in petroleum engineering programs at universities — including Texas schools — has dropped significantly, according to a recent report.

This prospective energy workforce is concerned about job security as the industry moves forward in the energy transition, reports the Wall Street Journal. The number of students enrolled in petroleum engineering programs has decreased to its lowest point in a decade, the WSJ found, breaking the typical cycle, which "ebbed and flowed" alongside the price of oil.

This decline is estimated as a 75 percent drop in enrollment since 2014, Lloyd Heinze, a Texas Tech University professor, tells the WSJ. The article specifies that the University of Texas at Austin has seen a 42 percent decline since its peak enrollment in 2015, and Texas A&M University has dropped 63.3 percent. Both schools' petroleum engineering programs are ranked No. 1 and No. 2, respectively, by U.S. News and World Report. Texas Tech, which ties with the University of Houston at No. 9 on the U.S. News report, has seen a 88.1 percent decline since its peak in 2015. UH data wasn't included in the article.

The article highlights declines at Colorado School of Mines (87.7 percent), Louisiana State University (89 percent), and University of Oklahoma (90 percent) since their peak enrollment in 2015.

A decline in future workforce for the energy industry would directly affect Houston's economy. According to the 2023 Houston Facts report from the Greater Houston Partnership, Houston held 23.8 percent of the nation’s jobs in oil and gas extraction (33,400 of 140,200) 17.0 percent of jobs in oil field services (33,600 of 198,100), and 9.6 percent of jobs in manufacturing of agricultural, construction and mining equipment (20,400 of 212,000), based on data from the U.S. Bureau of Labor Statistics.

Barbara Burger tells the WSJ that new climatetech-focused startups have emerged and become more attractive to both college graduates and current oil and gas workforce. “There’s competition in a way that probably wasn’t there 15 years ago,” she shares.

The lack of college student pipeline paired with the diminishing workforce from emerging companies poses a challenge to incubant energy corporations, many of which have invested in programs at schools to better attract college graduates. The WSJ article points to BP's $4 million fellowship program with U.S. universities announced in February.

Just this week, Baker Hughes granted $100,000 to the University of Houston's Energy Transition Institute, which was founded last year with backing from Shell. In a recent interview with EnergyCapital, Joseph Powell, founding director of UH Energy Transition Institute, explains how the institute was founded to better engage with college students and bring them into the transitioning industry.

"It takes a lot of energy to process chemicals, plastics, and materials in a circular manner," he says. "Developing that workforce of the future means we need the students who want to engage in these efforts and making sure that those opportunities are available across the board to people of all different economic backgrounds in terms of participating in what is going to be just a tremendous growth engine for the future in terms of jobs and opportunities."

Clean energy jobs are already in Texas, and are ripe for the taking, according to a recent SmartAsset report that found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.” While oil and gas positions are still paying top dollar, these clean energy jobs reportedly pay an average of 21 percent more than other jobs.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News