The future of the oil and gas workforce isn't looking too bright when it comes to recruiting, the Wall Street Journal reports. Photo via Getty Images

Student enrollment in petroleum engineering programs at universities — including Texas schools — has dropped significantly, according to a recent report.

This prospective energy workforce is concerned about job security as the industry moves forward in the energy transition, reports the Wall Street Journal. The number of students enrolled in petroleum engineering programs has decreased to its lowest point in a decade, the WSJ found, breaking the typical cycle, which "ebbed and flowed" alongside the price of oil.

This decline is estimated as a 75 percent drop in enrollment since 2014, Lloyd Heinze, a Texas Tech University professor, tells the WSJ. The article specifies that the University of Texas at Austin has seen a 42 percent decline since its peak enrollment in 2015, and Texas A&M University has dropped 63.3 percent. Both schools' petroleum engineering programs are ranked No. 1 and No. 2, respectively, by U.S. News and World Report. Texas Tech, which ties with the University of Houston at No. 9 on the U.S. News report, has seen a 88.1 percent decline since its peak in 2015. UH data wasn't included in the article.

The article highlights declines at Colorado School of Mines (87.7 percent), Louisiana State University (89 percent), and University of Oklahoma (90 percent) since their peak enrollment in 2015.

A decline in future workforce for the energy industry would directly affect Houston's economy. According to the 2023 Houston Facts report from the Greater Houston Partnership, Houston held 23.8 percent of the nation’s jobs in oil and gas extraction (33,400 of 140,200) 17.0 percent of jobs in oil field services (33,600 of 198,100), and 9.6 percent of jobs in manufacturing of agricultural, construction and mining equipment (20,400 of 212,000), based on data from the U.S. Bureau of Labor Statistics.

Barbara Burger tells the WSJ that new climatetech-focused startups have emerged and become more attractive to both college graduates and current oil and gas workforce. “There’s competition in a way that probably wasn’t there 15 years ago,” she shares.

The lack of college student pipeline paired with the diminishing workforce from emerging companies poses a challenge to incubant energy corporations, many of which have invested in programs at schools to better attract college graduates. The WSJ article points to BP's $4 million fellowship program with U.S. universities announced in February.

Just this week, Baker Hughes granted $100,000 to the University of Houston's Energy Transition Institute, which was founded last year with backing from Shell. In a recent interview with EnergyCapital, Joseph Powell, founding director of UH Energy Transition Institute, explains how the institute was founded to better engage with college students and bring them into the transitioning industry.

"It takes a lot of energy to process chemicals, plastics, and materials in a circular manner," he says. "Developing that workforce of the future means we need the students who want to engage in these efforts and making sure that those opportunities are available across the board to people of all different economic backgrounds in terms of participating in what is going to be just a tremendous growth engine for the future in terms of jobs and opportunities."

Clean energy jobs are already in Texas, and are ripe for the taking, according to a recent SmartAsset report that found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.” While oil and gas positions are still paying top dollar, these clean energy jobs reportedly pay an average of 21 percent more than other jobs.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil signs biggest offshore CCS lease in the U.S.

big deal

Spring-based ExxonMobil continues to ramp up its carbon capture and storage business with a new offshore lease and a new CCS customer.

On October 10, ExxonMobil announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

“This is yet another sign of our commitment to CCS and the strides we’ve been able to make,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The offshore site is adjacent to a CO2 pipeline network that ExxonMobil acquired in 2023 with its $4.9 billion purchase of Plano-based Denbury Resources.

Ammann told Forbes that when it comes to available acreage in the Gulf Coast, this site is “the largest and most attractive from a geological point of view.”

The initial customer for the newly purchased site will be Northbrook, Illinois-based CF Industries, Forbes reported.

This summer, ExxonMobil sealed a deal to remove up to 500,000 metric tons of CO2 each year from CF’s nitrogen plant in Yazoo City, Mississippi. CF has earmarked about $100 million to build a CO2 dehydration and compression unit at the plant.

A couple of days before the lease announcement, Ammann said in a LinkedIn post that ExxonMobil had agreed to transport and annually store up to 1.2 metric tons of CO2 from the $1.6 billion New Generation Gas Gathering (NG3) pipeline project in Louisiana. Houston-based Momentum Midstream is developing NG3, which will collect and treat natural gas produced in Texas and Louisiana and deliver it to Gulf Coast markets.

This is ExxonMobil’s first CCS deal with a natural gas processor and fifth CCS deal agreement overall. To date, ExxonMobil has contracts in place for storage of up to 6.7 metric tons of CO2 per year.

“I’m proud that even more industries are choosing our #CCS solutions to meet their emissions reduction goals,” Ammann wrote on LinkedIn.

ExxonMobil says it operates the largest CO2 pipeline network in the U.S.

“The most fundamental thing we’re focused on is making sure the CO2 is stored safely and securely,” Ammann told Forbes in addressing fears that captured CO2 could seep back into the atmosphere.

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

Expert: Repurposing Houston’s infrastructure for a clean energy future

guest column

Houston, often dubbed the “Energy Capital of the World,” is at a pivotal moment in its history. Known for its vast oil and gas reserves, the city is now embracing a new role as a leader in the clean energy transition. This shift is not just about adopting new technologies but also about creatively repurposing existing infrastructure to support sustainable energy solutions.

Houston’s offshore oil wells, many of which are old or abandoned, present a significant opportunity for carbon capture. By repurposing these wells, we can sequester carbon dioxide, reducing greenhouse gas emissions and mitigating climate change. This approach not only utilizes existing infrastructure but also provides a cost-effective solution for carbon management. According to the Greater Houston Partnership, initiatives like these are crucial as Houston aims to lower its climate-changing greenhouse gas emissions. Exxon estimates that just their proposed CCS hub could capture and store 50 million metric tons of CO2 annually by 2030 and 100 million metric tons by 2040.

The proximity of abandoned offshore platforms to the coast makes them ideal candidates for renewable energy substations. These platforms can be transformed into hubs for wind, solar or tidal energy, facilitating the integration of renewable energy into the grid. This repurposing not only maximizes the use of existing structures but also minimizes environmental disruption.

Decommissioned pipelines, which are already in place, offer a ready-made solution for routing renewable energy cables. By using these existing rights of way, Houston can avoid disturbing additional seafloor and reduce the environmental impact of new cable installations. This strategy ensures a smoother transition to renewable energy infrastructure. The U.S. Energy Information Administration notes that Texas, including Houston, leads the nation in wind-generated electricity, highlighting the potential for further renewable energy development.

Onshore oil and gas facilities in Houston also hold potential for clean energy repurposing. Wells that were drilled but never used for oil or gas can be adapted for geological thermal energy storage. This process involves storing excess renewable energy in the form of heat, which can be retrieved when needed, providing a reliable and sustainable energy source. This innovative use of existing wells aligns with Houston’s broader energy transition strategy, which aims to leverage the city’s industrial expertise for a low-carbon future.

Once the land has been remediated, old and abandoned oil fields can be converted into solar farms. This transformation not only provides a new use for previously contaminated land but also contributes to the generation of clean, renewable energy. Solar farms on these sites can help meet Houston’s energy needs while supporting environmental restoration. The Environmental Protection Agency in recent years recognized Houston as the top city in the U.S. for green energy usage, with annual green power usage topping 1 billion kilowatt-hours in 2021.

Houston’s journey towards a clean energy future is a testament to the power of innovation and adaptability. By repurposing existing infrastructure, we can create a sustainable energy landscape that honors the city’s industrial past while paving the way for a greener tomorrow. These strategies highlight the potential for Houston to lead in the clean energy transition, setting an example for cities worldwide.

———

Tershara Mathews is the national offshore wind lead at WSP.