Data centers, EVs, and storms put the Texas grid to the test. Photo courtesy UH.

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Meta will use electricity generated by one of ENGIE's Texas solar farms to power its U.S. data centers. Photo via engie.com.

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”
The University of Houston is one of 23 institutions to be awarded DOE funding for fusion research. Photo courtesy UH.

UH lands $8M in federal funding for fusion energy research

fusion funding

The University of Houston will receive $8 million in federal funding from the U.S. Department of Energy for its work on fusion technology to help power data centers and medical work.

Venkat Selvamanickam, professor at UH’s Cullen College of Mechanical and Aerospace Engineering and director of the Advanced Manufacturing Institute, has been tasked to lead the research on superconducting magnets that he said will make compact fusion reactors possible.

“Beyond fusion, superconductors can transform how we deliver power to data centers, enable highly efficient motors and generators and improve electric power devices,” Selvamanickam said in a news release. “They also enable critical applications such as MRI and proton beam therapy for cancer treatment. I want society to experience the broad benefits this remarkable technology can provide.”

UH is one of 23 institutions selected to share part of $134 million from the DOE’s Fusion Energy Sciences division. The total funding is split across two initiatives: $128 million for the Fusion Innovation Research Engine (FIRE) and $6.1 million for the Innovation Network for Fusion Energy program, according to the university.

UH will partner with the FIRE Collaborative for the research, which looks to understand why superconducting magnets in fusion reactors break down and work on developing solutions to make them more resilient.

“The advantage of fusion is it’s clean and it does not require storage. Solar energy can’t be used at night, and wind energy depends on wind conditions,” Selvamanickam added in the release. “Our goal is to make fusion a truly viable energy source.”

Jarred Shaffer has been named director of the new Texas Advanced Nuclear Energy Office. Photo via LinkedIn.

Policy adviser tapped to lead ‘nuclear renaissance’ in Texas

going nuclear

As Texas places a $350 million bet on nuclear energy, a budget and policy adviser for Gov. Greg Abbott has been tapped to head the newly created Texas Advanced Nuclear Energy Office.

Jarred Shaffer is now director of the nuclear energy office, which administers the $350 million Texas Advanced Nuclear Development Fund. The fund will distribute grants earmarked for the development of more nuclear reactors in Texas.

Abbott said Shaffer’s expertise in energy will help Texas streamline nuclear regulations and guide “direct investments to spur a flourishing and competitive nuclear power industry in the Lone Star State. Texas will lead the nuclear renaissance.”

The Texas Nuclear Alliance says growth of nuclear power in the U.S. has stalled while China and Russia have made significant gains in the nuclear sector.

“As Texas considers its energy future, the time has come to invest in nuclear power — an energy source capable of ensuring grid reliability, economic opportunity, and energy and national security,” Reed Clay, president of the alliance, said.

“Texas is entering a pivotal moment and has a unique opportunity to lead. The rise of artificial intelligence and a rebounding manufacturing base will place unprecedented demands on our electricity infrastructure,” Clay added. “Meeting this moment will require consistent, dependable power, and with our business-friendly climate, streamlined regulatory processes, and energy-savvy workforce, we are well-positioned to become the hub for next-generation nuclear development.”

Abbott’s push for increased reliance on nuclear power in Texas comes as public support for the energy source grows. A 2024 survey commissioned by the Texas Public Policy Institute found 55 percent of Texans support nuclear energy. Nationwide support for nuclear power is even higher. A 2024 survey conducted by Bisconti Research showed a record-high 77 percent of Americans support nuclear energy.

Nuclear power accounted for 7.5 percent of Texas’ electricity as of 2024, according to the Nuclear Energy Institute, but made up a little over 20 percent of the state’s clean energy. Currently, four traditional reactors produce nuclear power at two plants in Texas. The total capacity of the four nuclear reactors is nearly 5,000 megawatts.

Because large nuclear plants take years to license and build, small factory-made modular reactors will meet much of the shorter-term demand for nuclear energy. A small modular reactor has a power capacity of up to 300 megawatts. That’s about one-third of the generating power of a traditional nuclear reactor, according to the International Atomic Energy Agency.

A report from BofA Global Research predicts the global market for small nuclear reactors could reach $1 trillion by 2050. These reactors are cheaper and safer than their larger counterparts, and take less time to build and produce fewer CO2 emissions, according to the report. Another report, this one from research company Bloomberg Intelligence, says soaring demand for electricity — driven mostly by AI data centers — will fuel a $350 billion boom in nuclear spending in the U.S., boosting output from reactors by 63 percent by 2050.

Global nuclear capacity must triple in size by 2050 to keep up with energy demand tied to the rise of power-gobbling AI data centers, and to accomplish decarbonization and energy security goals, the BofA report says. Data centers could account for nine percent of U.S. electricity demand by 2035, up from about four percent today, according to BloombergNEF.

As the Energy Capital of the World, Houston stands to play a pivotal role in the evolution of small and large nuclear reactors in Texas and around the world. Here are just three of the nuclear power advancements that are happening in and around Houston:

Houston is poised to grab a big chunk of the more than 100,000 jobs and more than $50 billion in economic benefits that Jimmy Glotfelty, a former member of the Texas Public Utility Commission, predicts Texas will gain from the state’s nuclear boom. He said nuclear energy legislation signed into law this year by Abbott will provide “a leg up on every other state” in the race to capitalize on the burgeoning nuclear economy.

“Everybody in the nuclear space would like to build plants here in Texas,” Inside Climate News quoted Glotfelty as saying. “We are the low-regulatory, low-cost state. We have the supply chain. We have the labor.”
A team of Rice University researchers has found a way to convert data center waste into clean power using rooftop solar collectors. Photo courtesy Rice University.

Rice University team finds economical way to recycle data center heat into power

waste not

As data centers expand, their energy demands rise as well. Researchers at Rice University have discovered a way to capture low-temperature waste heat from data centers and convert it back into usable power.

The team has introduced a novel solar thermal-boosted organic Rankine cycle (ORC)—a power system that uses a safe working fluid to make electricity from heat. The design incorporates low-cost rooftop flat-plate solar collectors, which warm the data center’s coolant stream before it enters the ORC. The findings, published in Solar Energy, show that the additional “solar bump” helps surpass the technical roadblocks with data center waste, which has typically been too cool to generate power on its own.

The research was supported by the Alliance for Sustainable Energy LLC, the National Renewable Energy Laboratory and the U.S. Department of Energy.

“There’s an invisible river of warm air flowing out of data centers,” Laura Schaefer, the Burton J. and Ann M. McMurtry Chair of Mechanical Engineering at Rice and co-author of the paper, said in a news release. “Our question was: Can we nudge that heat to a slightly higher temperature with sunlight and convert a lot more of it into electricity? The answer is yes, and it’s economically compelling.”

Traditionally, electric heat pumps have been used to raise temperatures before recovery, but the benefits were limited because the pumps consumed significant extra power.

Kashif Liaqat, a graduate student in mechanical engineering at Rice, and Schaefer achieved a "temperature lift” by using solar energy to create thermoeconomic models. They modeled affordable, low-profile rooftop solar collectors that fed into an ORC and tied into a liquid-cooling loop. The collectors were validated against industry tools and tested at some of America’s largest data center hubs in Ashburn, Virginia, and Los Angeles, which provided varying climate challenges.

The system recovered 60 percent to 80 percent more electricity annually from the same waste heat, with a 60 percent boost in Ashburn and an 80 percent boost in Los Angeles, according to Rice. It also achieved over 8 percent higher ORC efficiency during peak hours, and an increase in annual average efficiency. The approach also lowered the cost of electricity from the recovered power by 5.5 percent in Ashburn and by 16.5 percent in Los Angeles.

“What the industry considers a weakness becomes a strength once you add solar,” Liaqat said in a news release. “That’s great news for modern data centers.”

Next up, the team will look to pilot its hybrid system in operational sites and explore thermal storage, which the researchers hope could bank solar heat during the day to assist with energy recovery efforts at night.

Hitachi Energy will build a new power transformer factory and plans to manufacture infrastructure for the U.S. electric grid. Photo courtesy Hitachi Energy.

Houston energy company to invest $1B in U.S. electric grid manufacturing

grid boost

Hitachi Energy, whose U.S. headquarters is in Houston, has earmarked more than $1 billion to manufacture infrastructure for the U.S. electric grid, which is coping with greater power demand from data centers and AI platforms.

Of that sum, $457 million is dedicated to building a power transformer factory in Virginia. Hitachi Energy said it’ll be the largest facility of its kind in the U.S.

“Power transformers are a linchpin technology for a robust and reliable electric grid and winning the AI race. Bringing production of large power transformers to the U.S. is critical to building a strong domestic supply chain for the U.S. economy and reducing production bottlenecks, which is essential as demand for these transformers across the economy is surging,” said Andreas Schierenbeck, CEO of Switzerland-based Hitachi Energy, which generates revenue of about $16 billion.

The Hitachi announcement aligns with various priorities of the Trump administration. The White House is promoting more U.S.-based manufacturing, more power to accommodate data centers and AI, and greater use of U.S. energy resources.

“If we are going to win the AI race, reindustrialize, and keep the lights on, America is going to need a lot more reliable energy,” U.S. Energy Secretary Chris Wright said.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Energy sector AI spending is set to soar to $13B, report says

eyes on ai

Get ready for a massive increase in the amount of AI spending by oil and gas companies in the Houston area and around the country.

A new report from professional services firm Deloitte predicts AI will represent 57 percent of IT spending by U.S. oil and gas companies in 2029. That’s up from the estimated share of 23 percent in 2025.

According to the analysis, the amount of AI spending in the oil and gas industry will jump from an estimated $4 billion in 2025 to an estimated $13.4 billion in 2029—an increase of 235 percent.

Almost half of AI spending by U.S. oil and gas companies targets process optimization, according to Deloitte’s analysis of data from market research companies IDC and Gartner. “AI-driven analytics adjust drilling parameters and production rates in real time, improving yield and decision-making,” says the Deloitte report.

Other uses for AI in the oil and gas industry cited by Deloitte include:

  • Integrating infrastructure used by shale producers
  • Monitoring pipelines, drilling platforms, refineries, and other assets
  • Upskilling workers through AI-powered platforms
  • Connecting workers on offshore rigs via high-speed, real-time internet access supplied by satellites
  • Detecting and reporting leaks

The report says a new generation of technology, including AI and real-time analytics, is transforming office and on-site operations at oil and gas companies. The Trump administration’s “focus on AI innovation through supportive policies and investments could further accelerate large-scale adoption and digital transformation,” the report adds.

Chevron and ExxonMobil, the two biggest oil and gas companies based in the Houston area, continue to dive deeper into AI.

Chevron is taking advantage of AI to squeeze more insights from enormous datasets, VentureBeat reported.

“AI is a perfect match for the established, large-scale enterprise with huge datasets—that is exactly the tool we need,” Bill Braun, the company’s now-retired chief information officer, said at a VentureBeat event in May.

Meanwhile, AI enables ExxonMobil to conduct autonomous drilling in the waters off the coast of Guyana. ExxonMobil says its proprietary system improves drilling safety, boosts efficiency, and eliminates repetitive tasks performed by rig workers.

ExxonMobil is also relying on AI to help cut $15 billion in operating costs by 2027.

“There is a concerted effort to make sure that we’re really working hard to apply that new technology … to drive effectiveness and efficiency,” Darren Woods, executive chairman and CEO of ExxonMobil, said during a 2024 earnings call.

Houston Innovation Awards winners include Fervo, Eclipse Energy & more

Top Innovators

After weeks of anticipation, the 2025 Houston Innovation Awards winners have been revealed. Finalists, judges, and VIPs from Houston's vibrant innovation community gathered on Nov. 13 at Greentown Labs for the fifth annual event, which is presented by InnovationMap.com.

This year, the Houston Innovation Awards recognized more than 40 finalists, with winners unveiled in 10 categories, including multiple winners from the local energy transition space.

Finalists and winners were determined by our esteemed panel of judges, comprised of 2024 winners who represent various Houston industries, as well as InnovationMap editorial leadership. One winner was determined by the public via an online competition: Startup of the Year.

The program was emceed by Lawson Gow, Head of Houston for Greentown Labs. Sponsors included Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more.

Without further adieu, meet the 2025 Houston Innovation Awards winners:

Minority-founded Business: Mars Materials

Clean chemical manufacturing business Mars Materials is working to convert captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. The company develops and produces its drop-in chemical products in Houston and uses an in-licensed process for the National Renewable Energy Lab to produce acrylonitrile, which is used to produce plastics, synthetic fibers and rubbers. The company reports that it plans to open its first commercial plant in the next 18 months.

Female-founded Business, presented by Houston Powder Coaters: March Biosciences

Houston cell therapy company March Biosciences aims to treat unaddressed challenging cancers, with its MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma, currently in Phase 2 clinical trials. The company was founded in 2021 by CEO Sarah Hein, Max Mamonkin and Malcolm Brenner and was born out of the TMC Accelerator for Cancer Therapeutics.

Energy Transition Business: Eclipse Energy

Previously known as Gold H2, Eclipse Energy converts end-of-life oil fields into low-cost, sustainable hydrogen sources. It completed its first field trial this summer, which demonstrated subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen.

Health Tech Business: Koda Health

Koda Health has developed an advance care planning platform (ACP) that allows users to document and share their care preferences, goals and advance directives for health systems. The web-based platform guides patients through values-based decisions with interactive tools and generates state-specific, legally compliant documents that integrate seamlessly with electronic health record systems. Last year, the company also added kidney action planning to its suite of services for patients with serious illnesses. In 2025, it announced major partnerships and integrations with Epic, Guidehealth, and others, and raised a $7 million series A.

Deep Tech Business: Persona AI

Persona AI is building modularized humanoid robots that aim to deliver continuous, round-the-clock productivity and skilled labor for "dull, dirty, dangerous, and declining" jobs. The company was founded by Houston entrepreneur Nicolaus Radford, who serves as CEO, along with CTO Jerry Pratt and COO Jide Akinyode. It raised eight figures in pre-seed funding this year and is developing its prototype of a robot-welder for Hyundai's shipbuilding division, which it plans to unveil in 2026.

Scaleup of the Year: Fervo Energy

Houston-based Fervo Energy is working to provide 24/7 carbon-free energy through the development of cost-competitive geothermal power. The company is developing its flagship Cape Station geothermal power project in Utah, which is expected to generate 400 megawatts of clean energy for the grid. The company raised $205.6 million in capital to help finance the project earlier this year and fully contracted the project's capacity with the addition of a major power purchase agreement from Shell.

Incubator/Accelerator of the Year: Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Startup of the Year (People's Choice): FlowCare

FlowCare is developing a period health platform that integrates smart dispensers, education, and healthcare into one system to make free, high-quality, organic period products more accessible. FlowCare is live at prominent Houston venues, including Discovery Green, Texas Medical Center, The Ion, and, most recently, Space Center Houston, helping make Houston a “period positivity” city.

Mentor of the Year, presented by Houston City College Northwest: Jason Ethier, EnergyTech Nexus

Jason Ethier is the founding partner of EnergyTech Nexus, through which he has mentored numerous startups and Innovation Awards finalists, including Geokiln, Energy AI Solutions, Capwell Services and Corrolytics. He founded Dynamo Micropower in 2011 and served as its president and CEO. He later co-founded Greentown Labs in Massachusetts and helped bring the accelerator to Houston.

2025 Trailblazer Award: Wade Pinder

Wade Pinder, founder of Product Houston, identifies as an "Ecosystem Wayseeker" and is the founder of Product Houston. A former product manager at Blinds.com, he has been deeply engaged in Houston’s startup and innovation scene since 2012. Over the years, he has supported hundreds of founders, product leaders, and community builders across the Houston area. In 2023, he was honored as Mentor of the Year in the Houston Innovation Awards.

SLB partners with renewables company to develop next-gen geothermal systems

geothermal partnership

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.