Baker Hughes has teamed up with Dallas-based Frontier Infrastructure and has been selected by the U.S. Air Force and the Department of Defense for global clean energy projects. Photo via bakerhughes.com.

Energy tech company Baker Hughes announced two major clean energy initiatives this month.

The Houston-based company has teamed up with Dallas-based Frontier Infrastructure to develop carbon capture and storage (CCS), power generation and data center operations in the U.S.

Baker Hughes will supply technology for Frontier’s nearly 100,000-acre CCS hub in Wyoming, which will provide open-access CO2 storage for manufacturers and ethanol producers, as well as future Frontier projects. Frontier has already begun drilling activities at the Wyoming site.

“Baker Hughes is committed to delivering innovative solutions that support increasing energy demand, in part driven by the rapid adoption of AI, while ensuring we continue to enable the decarbonization of the industry,” says Lorenzo Simonelli, chairman and CEO of Baker Hughes.

Additionally, Baker Hughes announced this week that it was selected by the U.S. Air Force and the Department of Defense’s Chief Digital and Artificial Intelligence Office (CDAO) to develop utility-scale geothermal power plants that would power global U.S. military bases.

Baker Hughes was granted an "awardable," or eligible, status through the CDAO's Tradewinds Solutions Marketplace, which aims to accelerate "mission-critical technologies," including AI, machine learning and resilient energy technologies. The potential geothermal plants would provide cost-effective electricity, even during a grid outage.

“The ability of geothermal to provide reliable, secure baseload power makes it an ideal addition to America’s energy mix,” Ajit Menon, vice president of geothermal, oilfield services and equipment at Baker Hughes, said in a news release. “Baker Hughes has been a pioneer in this field for more than 40 years and our unique subsurface-to-surface expertise and advanced technology across the geothermal value chain will help the U.S. military unlock this critical domestic energy source, while simultaneously driving economic growth and energy independence.”

D.C.-based Last Energy plans to bring 30 micro-nuclear reactors in Texas online within the next two years. Rending courtesy Last Energy.

Energy co. to build 30 micro-nuclear reactors in Texas to meet rising demand

going nuclear

A Washington, D.C.-based developer of micro-nuclear technology plans to build 30 micro-nuclear reactors near Abilene to address the rising demand for electricity to operate data centers across Texas.

The company, Last Energy, is seeking permission from the Electric Reliability Council of Texas (ERCOT) and the U.S. Nuclear Regulatory Commission to build the microreactors on a more than 200-acre site in Haskell County, about 60 miles north of Abilene.

The privately financed microreactors are expected to go online within roughly two years. They would be connected to ERCOT’s power grid, which serves the bulk of Texas.

“Texas is America’s undisputed energy leader, but skyrocketing population growth and data center development is forcing policymakers, customers, and energy providers to embrace new technologies,” says Bret Kugelmass, founder and CEO of Last Energy.

“Nuclear power is the most effective way to meet Texas’ demand, but our solution—plug-and-play microreactors, designed for scalability and siting flexibility—is the best way to meet it quickly,” Kugelmass adds. “Texas is a state that recognizes energy is a precondition for prosperity, and Last Energy is excited to contribute to that mission.”

Texas is home to more than 340 data centers, according to Perceptive Power Infrastructure. These centers consume nearly 8 gigawatts of power and make up 9 percent of the state’s power demand.

Data centers are one of the most energy-intensive building types, says to the U.S. Department of Energy, and account for approximately 2 percent of the total U.S. electricity use.

Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, according to the Idaho National Laboratory. Yet each Last Energy microreactor can produce 20 megawatts of thermal energy.

Before announcing the 30 proposed microreactors to be located near Abilene, Last Energy built two full-scale prototypes in Texas in tandem with manufacturing partners. The company has also held demonstration events in Texas, including at CERAWeek 2024 in Houston. Last Energy, founded in 2019, is a founding member of the Texas Nuclear Alliance.

“Texas is the energy capital of America, and we are working to be No. 1 in advanced nuclear power,” Governor Greg Abbott said in a statement. “Last Energy’s microreactor project in Haskell County will help fulfill the state’s growing data center demand. Texas must become a national leader in advanced nuclear energy. By working together with industry leaders like Last Energy, we will usher in a nuclear power renaissance in the United States.”

Nuclear energy is not a major source of power in Texas. In 2023, the state’s two nuclear power plants generated about 7% of the state’s electricity, according to the U.S. Energy Information Administration. Texas gains most of its electricity from natural gas, coal, wind, and solar.

A new joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants for the ERCOT and PJM Interconnection grids. Photo via Getty Images.

NRG Energy forms joint venture to build power plants for ERCOT and AI-driven demand

teaming up

Houston-based power provider NRG Energy Inc. has formed a joint venture with two other companies to meet escalating demand for electricity to fuel the rise of data centers and the evolution of generative AI.

NRG’s partners in the joint venture are GE Vernova, a provider of renewable energy equipment and services, and TIC – The Industrial Co., a subsidiary of construction and engineering company Kiewit.

“The growing demand for electricity in part due to GenAI and the buildup of data centers means we need to form new, innovative partnerships to quickly increase America’s dispatchable generation,” Robert Gaudette, head of NRG Business and Wholesale Operations, said in a news release. “Working together, these three industry leaders are committed to executing with speed and excellence to meet our customers’ generation needs.”

Initially, the joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants, which uses a combination of natural gas and steam turbines that produce additional electricity from natural gas waste. Electricity from these projects will be produced for power grids operated by the Electric Reliability Council of Texas (ERCOT) and PJM Interconnection. The projects are scheduled to come online from 2029 through 2032.

The joint venture says the model it’s developing for these four projects is “replicable and scalable,” with the potential for expansion across the U.S.

The company is also developing a new 721-megawatt natural gas combined-cycle unit at its Cedar Bayou plant in Baytown, Texas. Read more here.

Chevron, Engine No. 1 and GE Vernova will develop power plants that allow for the future integration of lower-carbon solutions to support AI-focused data centers. Photo via Getty Images

Chevron and partners to develop innovative power plants to support AI-focused data centers

power partners

Houston-based Chevron U.S.A. Inc., San Francisco investment firm Engine No. 1, and Boston electric service company GE Vernova have announced a partnership to create natural gas power plants in the United States. These plants support the increased demand for electricity at data centers, specifically those developing artificial intelligence solutions.

“The data centers needed to scale AI require massive amounts of 24/7 power. Meeting this demand is forecasted to require significant investment in power generation capacity, while managing carbon emissions and mitigating the risk of grid destabilization,” Chevron CEO Mike Wirth, shared in a LinkedIn post.

The companies say the plants, known as “power foundries,” are expected to deliver up to four gigawatts, equal to powering 3 million to 3.5 million U.S. homes, by the end of 2027, with possible project expansion. Their design will allow for the future integration of lower-carbon solutions, such as carbon capture and storage and renewable energy resources.

They are expected to leverage seven GE Vernova 7HA natural gas turbines, which will serve co-located data centers in the Southeast, Midwest and West. The exact locations have yet to be specified.

“Energy is the key to America’s AI dominance, “ Chris James, founder and chief investment officer of investment firm Engine No. 1, said in a news release. “By using abundant domestic natural gas to generate electricity directly connected to data centers, we can secure AI leadership, drive productivity gains across our economy and restore America’s standing as an industrial superpower. This partnership with Chevron and GE Vernova addresses the biggest energy challenge we face.”

According to the companies, the projects offer cost-effective and scalable solutions for growth in electrical demand while avoiding burdening the existing electrical grid. The companies plan to also use the foundries to sell surplus power to the U.S. power grid in the future.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report ranks Texas in the middle for sustainable development

room to improve

Texas appears in the middle of the pack in a new ranking of the best states for sustainable development.

SmileHub, a nonprofit that rates charities, examined 20 key metrics to create its list of the best states for sustainable development. Among the metrics it studied were the share of urban tree cover, green buildings per capita and clean energy jobs per capita. Once SmileHub crunched all the numbers, it put Texas in 24th place — one notch above average.

The United Nations defines sustainable development as “meeting present needs without compromising the chances of future generations to meet their needs.”

Here’s how Texas fared in several of SmileHub’s ranking categories:

  • No. 2 for water efficiency and sustainability
  • No. 7 for presence of wastewater reuse initiatives
  • No. 18 for environmental protection charities per capita
  • No. 25 for green buildings per capita
  • No. 34 for clean energy jobs per capita
  • No. 34 for industrial toxins per square mile
  • No. 38 for share of tree cover in urban areas

California leads the SmileHub list, followed by Vermont, Massachusetts, Oregon and Maryland.

When it comes to water, a 2024 report commissioned by Texas 2036, a nonpartisan think tank, recommends that Texas invest $154 billion over the next 50 years in new water supply and infrastructure to support sustainable growth, according to the Greater Houston Partnership.

“The report underscores a stark reality: a comprehensive, sustainable funding strategy for water is necessary to keep Texas economically resilient and competitive,” the partnership says.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.