browning the green space

Greentown Labs names latest cohort of BIPOC-led climatetech startups

The seven selected startups will have year-long curated curriculum, incubation at Greentown's two locations, a non-dilutive $25,000 grant, and access to mentors, corporates, and more from both Greentown and BGS's networks. Photo via browningthegreenspace.org

Two organizations have named the seven startup participants for their accelerator that works to advance BIPOC-led startups in the climatetech space.

Greentown Labs and Browning the Green Space named the newest accelerator for the Advancing Climatetech and Clean Energy Leaders Program, or ACCEL. The seven selected startups will have year-long curated curriculum, incubation at Greentown's two locations, a non-dilutive $25,000 grant, and access to mentors, corporates, and more from both Greentown and BGS's networks.

"Building on the momentum and success of our inaugural year, Greentown Labs is proud to welcome this incredible cohort of BIPOC-led startups to Year 2 of ACCEL," Greentown Labs CEO and President Kevin Knobloch says in a news release. "These founders and their teams are developing a dynamic array of much-needed climatetech solutions, and we're privileged to support them on their startup journeys as they advance their technologies and grow their teams."

The 2024 cohort includes:

  • AtmoSpark Technologies, based in Houston, is an atmospheric water generation company with a patented electro-condensation technology, which has a lower energy footprint than that of current water-generation methods.
  • Cambridge, Massachusetts-based Aquasaic is harnessing biology to clean water for planetary and human health.
  • Houston-based Axis Sky Renewablescreates innovative wind solutions, specializing in vertical-axis wind turbines that are less expensive to produce, deploy, and maintain than traditional wind turbines.
  • Carbon Negative Solutions, from Rock Hill, New York, is creating smart-city-ready, carbon-negative concrete products.
  • NYC-based Cellsense develops interactive bio-embellishments that create new possibilities for designers while eliminating microplastics and replacing fossil-fuel-based material at scale.
  • EcoForge, headquartered in Providence, Rhode Island, is a building-material technology company developing affordable, high-performance building materials from local agricultural residues, replacing energy-intensive, fossil-based materials.
  • Boston-based Sankofa Dynamics creates low-cost, eco-friendly solutions for water, air, and energy problems.

The program is supported by the Massachusetts Clean Energy Center,Microsoft's Climate Innovation Fund, Equinor, Barr Foundation.

"These BIPOC-led startups are developing climate technologies that will lead us to a more equitable and sustainable future," MassCEC CEO Dr. Emily Reichert, the former CEO of Greentown, says in the release. "We want ALL climatetech innovators and entrepreneurs to thrive here in Massachusetts. We are proud to support the ACCEL accelerator, created and led by Greentown Labs and Browning the Green Space. The ACCEL program is helping us build a more diverse innovation ecosystem by breaking down barriers and expanding opportunities."

ACCEL was announced in 2022, and the first cohort featured six climatetech startups — two based in Houston.

"Our second year of ACCEL brings together an inspirational and diverse cohort of seven BIPOC-led startups developing tech to accelerate the distribution of climate solutions that address community needs," Browning the Green Space President and Executive Director Kerry Bowie adds. "We are thrilled to continue to strengthen our partnership with Greentown Labs and VentureWell and build on the learnings from the pilot cohort to provide critical support infrastructure for entrepreneurs of color."

The ACCEL program kicks off at an event on March 6 at Greentown's Boston location.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News