Six companies have joined Greentown Houston, focused on long-duration energy storage systems, 3D solar towers and more. Photo courtesy Greentown Labs.

Greentown Labs announced the six startups to join its Houston community in Q2 of 2025.

The companies are among a group of 13 that joined the climatetech incubator, which is co-located in Houston and Boston, in the same time period. The companies that joined the Houston-based lab specialize in a number of clean energy applications, from long-duration energy storage systems to 3D solar towers.

The new Houston members include:

  • Encore CO2, a Louisiana-based company that converts CO2 into ethanol, acetate, ethylene and other sustainable chemicals through its innovative electrolysis technology
  • Janta Power, a Dallas-based company with proprietary 3D-solar-tower technology that deploys solar power vertically rather than flatly, increasing power and energy generation
  • Licube, an Austin-based company focused on sustainable lithium recovery from underutilized sources using its proprietary and patented electrodialysis technology
  • Newfound Materials, a Houston-based company that has developed a predictive engine for materials R&D
  • Pix Force, a Houston-based company that develops AI algorithms to inspect substations, transmission lines and photovoltaic plants using drones
  • Wattsto Energy, a Houston-based manufacturer of a long-duration-energy-storage system with a unique hybrid design that provides fast, safe, sustainable and cost-effective energy storage at the microgrid and grid levels

Seven other companies will join Greentown Boston's incubator. See the full list here.

Greentown Houston also added five startups to its local lab in Q1. Read more about the companies here.

Greentown Labs and MassChallenge have formed a strategic partnership. Photo courtesy Greentown Labs.

Greentown Labs combines forces with MassChallenge to support more climate startups

strategic partnership

Climatetech incubator Greentown Labs has formed a strategic partnership with global zero-equity accelerator MassChallenge.

The two organizations have headquarters in the Boston area, while Greentown Labs is also co-located in Houston. MassChallenge has a hub in Dallas, as well as others in Israel, Switzerland and the United Kingdom.

The new partnership aims to strengthen the ecosystem for early-stage climatetech startups by providing more mentorship, support and a broader commercialization network for members, according to a news release.

Greentown Labs will share its expertise with the 23 startups in MassChallenge's first climate-specific accelerator, known as the MassChallenge Early Stage Climate program. Additionally, Greentown Labs members will benefit from MassChallenge's network of expert mentors, judges, entrepreneurs, partners, investors, philanthropists and others.

“There are so many synergies and shared values between MassChallenge and Greentown that launching a collaboration like this feels like a natural next step for our organizations as we strive to support as many early-stage climate founders as possible,” Georgina Campbell Flatter, Greentown Labs CEO, said in the news release. “We want to reduce the friction and barriers to market for these climate entrepreneurs and ultimately increase their opportunity for success—ecosystem collaboration is an essential part of solving these challenges together.”

Combined, Greentown and MassChallenge report that they have supported more than 4,500 founders and more than 1,000 climate startups. MassChallenge has awarded more than $18 million in equity-free grants to startups, which have gone on to raise over $15 billion, since it was founded in 2009. Greentown Labs has helped more than 575 startups raise more than $8.2 billion in funding since it launched in 2011.

Greentown recently added five startups to its Houston community and 14 other climatetech ventures to its Boston incubator. It also announced its third ACCEL cohort, which works to advance BIPOC-led startups in the climatetech space, earlier this year. Read more here.

Five companies have joined Greentown Labs Houston, specializing in various "green" applications, from converting plastic waste into sustainable materials to developing energy-storage solutions. Photo courtesy Greentown Labs.

Greentown Labs announces newest startups to join Houston climatetech incubator

green team

Greentown Labs announced that it added five startups to its Houston community in Q1 of 2025.

The companies are among a group of 19 that joined the climatetech incubator, which is co-located in Houston and Boston, in the same time period. The companies that joined the Houston-based lab specialize in a number of "green" applications, from converting plastic waste into sustainable materials to developing energy-storage solutions.

The new Houston members include:

  • Concept Loop, a project of Pakistan-based Innova8e Inc., aims to repurpose post-industrial and post-consumer plastic waste into sustainable building materials.
  • GeoFuels, a Sugar Land-based company that produces hydrogen by using baseload geothermal power and methane pyrolysis.
  • PLASENE, a Houston-based company with an innovative platform that converts plastic waste into liquid fuel and low-carbon hydrogen through its proprietary catalysts and modular, scalable, pre-engineered units platform. The company was named to Greentown's ACCEL Year 3 cohort earlier this year.
  • RepAir Carbon, an Israeli company with a fully electric, zero-heat carbon-removal technology that consumes minimal energy, operates without liquids or solvents, and produces no hazardous materials or waste.
  • RotorVault from Pasadena, California, is commercializing energy-storage and load-following solutions that are containerized, modular, and field-deployable systems built on flywheel technology.

Fourteen other companies will join Greentown Boston's incubator. See the full list here.

PLASENE and five other new members—Thola, Respire Energy, Andros Innovations, FAST Metals and Tato Labs—join Greentown Labs through its most recent Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, cohort. ACCEL, which works to advance BIPOC-led startups in the climatetech space, announced its third cohort last month.

From potato-starch-based bioplastics startups to companies developing carbon-coated silicon anodes, here's who's joining Greentown Labs and Browning the Green Space's ACCEL program. Photo via browningthegreenspace.org

2 Houston startups join Greentown Labs' BIPOC-led accelerator program

seeing green

Greentown Labs and Browning the Green Space announced the newest cohort for its Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, which works to advance BIPOC-led startups in the climatetech space.

Two Houston companies and one from Austin are among the eight startups to be named to the 2025 group.

“The startups selected for the third ACCEL cohort represent a phenomenal range of energy and climatetech innovations, which underscores our belief that everyone and many solutions must play a role in our community’s collective decarbonization efforts,” Georgina Campbell Flatter, Greentown’s new CEO, said in a release. “We’re proud to welcome these entrepreneurs to our community and eager to see all they’ll achieve throughout the program and beyond!”

Each of the early-stage startups within the cohort will receive $25,000 in non-dilutive grant funding and participate in the year-long program focused on product and technology development, market development, fundraising and management, and team development, according to Greentown. The curriculum is led by VentureWell, a nonprofit with expertise in venture development in climatetech.

The Houston companies include:

  • Carbonext, founded by Olanrewaju Tanimola. The company is leveraging its proprietary, off-the-shelf 3D-graphene technology to develop integrated solutions with carbon-coated silicon anodes to address challenges in the graphite ecosystem, as well as lithium-battery anodes.
  • PLASENE, founded by Sohel Shaikh, Alper Gulludag and Romolo Raciti. The company offers an innovative platform that converts plastic waste into liquid fuel and low-carbon hydrogen through its proprietary catalysts and modular, scalable, pre-engineered units

The remaining six companies are:

  • Inductive Robotics, founded in Austin by Madhav Ayyagari and David Alspaugh. The startup deploys autonomous robots that deliver EV charging directly to parked vehicles in commercial parking facilities, using a subscription-based model.
  • Andros Innovations, founded in Cambridge, Massachusetts by Laron Burrows. The startup has developed a reactor that produces ammonia more cheaply, cleanly and safely than traditional methods do.
  • FAST Metals, founded in Worcester, Massachusetts by Sumedh Gostu and Anthony Staley. It has developed a hydrometallurgical-recovery process capable of extracting iron, aluminum, scandium, titanium, and other rare-earth elements from industrial tailings.
  • Respire Energy, founded in Boston by Dave Hsu, Xiaowei Teng, and Candy Wong. The energy storage startup has developed a safe, low-cost, and long-duration metal-air battery designed for microgrids.
  • Tato Labs, founded in Brooklyn by Mecca McDonald and Mia Dunn. It is developing scalable, innovative, bioplastic products and packaging solutions that leverage potato starch, protect and preserve the natural ecosystem, and minimize plastic waste.
  • Thola, founded in Portland, Maine, by Nneile Nkholise and Lerato Takana. The company provides an on-demand marketplace for commercial-building sustainability and safety management, with a mission to decarbonize old buildings.

ACCEL is supported by the Massachusetts Clean Energy Center (MassCEC), Shell, Equinor, the Growth Capital Division of MassDevelopment, Microsoft and the Barr Foundation.

The accelerator has supported 13 early-stage startups since it was founded in 2023, resulting in $325,000 in grant funding. Houston companies have been represented in each cohort. Click here to see the 2024 cohort and here to see the inaugural 2023 cohort.

A mix of public and private investors have funded Greentown Labs. Photo via GreentownLabs.com

Investors from Houston and Boston fuel Greentown with $4M commitment

next era

Greentown Labs, a climatetech incubator with locations in the Houston and Boston areas, has announced it has received funding from a mix of investors.

The $4 million in funding came from both of the Houston and Massachusetts locations. Houston investors included Bobby Tudor, CEO of Artemis Energy Partners and chairman of the Houston Energy Transition Initiative; David Baldwin, co-founder of OpenMinds and TEX-E and partner at SCF Partners; and Rice University. Other investors included MassDevelopment and the City of Somerville.

“The challenges of the energy transition are immense, and the role played by technology incubators like Greentown Labs is essential,” Tudor says in a news release. “We believe this role, which is a partnership between academia, industry, philanthropists, entrepreneurs, and governments, is the best way to get to effective, scalable solutions in a time frame that the urgency of the challenge requires. We need all hands on deck, and this partnership between Massachusetts and Texas can be a role model for others.”

According to Greentown, the funding will support its financial position and contribute to preparing the incubator for its next chapter of supporting its its leadership team prepare for Greentown’s next chapter supporting and growing its 575 startups.

“Greentown’s mission aligns closely with the Houston Energy Transition Initiative’s goal of accelerating global solutions to address the dual challenge of meeting growing energy demand globally while also significantly reducing CO2 emissions,” adds Steve Kean, president and CEO of the Greater Houston Partnership.

With the announcement of the funding, Greentown named its board members, including Tudor, who will serve as Greentown Labs Board Chair. The other Houston-based board members are:

  • David Baldwin, co-founder of OpenMinds and TEX-E; partner atSCF Partners
  • Bob Harvey, former president and CEO of GHP; board member of TEX-E
  • Jane Stricker, senior vice president of energy transition and executive director of HETI

“With this new funding, Greentown is poised to expand its impact across its existing ecosystems and support even more climatetech startups,” adds Kevin Dutt, interim CEO of Greentown Labs. “We believe in the essential role entrepreneurship will play in the energy transition and we’re grateful for the support of our partners who share in that belief and our collective commitment to commercializing these technologies as quickly and efficiently as possible.”

According to Greentown, the incubator plans to announce its new CEO in the coming months.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.

Houston microgrid company names new CEO

new hire

Houston-based electric microgrid company Enchanted Rock has named a new CEO.

John Carrington has assumed the role after serving as Enchanted Rock's executive chairman since June, the company announced earlier this month.

Carrington most recently was CEO of Houston-based Stem, which offers AI-enabled software and services designed for setting up and operating clean energy facilities. He stepped down as Stem’s CEO in September 2024. Stem, which was founded in 2006 and went public under Carrington's leadership in 2021, was previously based in San Francisco.

Carrington has also held senior leadership roles at Miasolé, First Solar and GE.

Corey Amthor has served as acting CEO of Enchanted Rock since June. He succeeded Enchanted Rock founder Thomas McAndrew in the role, with McAndrew staying on with the company as a strategic advisor and board member. With the hiring of Carrington, Amthor has returned to his role as president. According to the company, Amthor and Carrington will "partner to drive the company’s next phase of growth."

“I’m proud to join a leadership team known for technical excellence and execution, and with our company-wide commitment to innovation, we are well positioned to navigate this moment of unprecedented demand and advance our mission alongside our customers nationwide,” Carrington said in the news release. “Enchanted Rock’s technology platform delivers resilient, clean and scalable ultra-low-emissions onsite power that solves some of the most urgent challenges facing our country today. I’m energized by the strong momentum and growing market demand for our solutions, and we remain committed to providing data centers and other critical sectors with the reliable power essential to their operations.”

This summer, Enchanted Rock also announced that Ian Blakely would reassume the role of CFO at the company. He previously served as chief strategy officer. Paul Froutan, Enchanted Rock's former CTO, was also named COO last year.