apply now

Greentown Labs, Evonik launch accelerator to boost sustainability in personal care products

Greentown Labs and Evonik have launched the Greentown Go Make 2025 accelerator to support startups developing sustainable technologies for the personal care industry. Photo via Evonik.us

Greentown Labs and its corporate partner, Germany-based chemicals company Evonik, are calling for submissions to a new program geared at accelerating more sustainable personal care products.

The Greentown Go Make 2025 accelerator, which is based in both Greentown's Houston and Boston-area locations and open to companies from around the world, as launched applications now through January 23.

"Designed to accelerate startup-corporate partnerships to advance climatetech, this Greentown Go program is focused on increasing sustainability within the personal-care industry through the development, introduction, and commercialization of technologies that reduce products’ manufacturing-related emissions and end-of-life environmental impact," reads a news release from Greentown.

"More specifically, Go Make 2025 is interested in biodegradable polymers and sustainable specialty chemicals for personal care. Further details on the technology areas of interest can be found in the request for applications."

The selected companies will have access to Greentown's facilities and receive mentorship, networking opportunities, educational workshops, and structured programming. The startups will also have partnership opportunities with the program's corporate partner Evonik.

“The Greentown Go program represents an exciting opportunity for startups to showcase their groundbreaking solutions in sustainable chemistry,” Anil Saxena, vice president of RD&I at Evonik, says in the release. “At Evonik, innovation and sustainability are not just buzzwords; they are fundamental to our strategic growth. We are eager to identify and collaborate with companies that share our commitment to creating a more sustainable future.”

The global personal care market — which includes products across hygiene, cosmetics and beautification, cleaning, and grooming — represents 0.5 to 1.5 percent of global greenhouse-gas emissions, per Greentown's release. Evonik announced its sustainability-focused game plan in September, focusing on bio-based solutions, the energy transition, and the circular economy.

“The building blocks of the personal-care industry are ripe for climatetech innovation, and there’s no better partner for harnessing this opportunity than Evonik, a global leader in specialty chemicals,” adds Aisling Carlson, senior vice president of partnerships at Greentown. “Greentown Go has a strong track record of fostering meaningful startup-corporate partnerships, and we look forward to working with Evonik and a set of groundbreaking entrepreneurs in this program.”

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News