on the hunt

Greentown Labs to launch another executive search, CEO to step down after less than a year in the position

Kevin Knobloch is stepping down as Greentown Labs CEO, effective on July 31. Photos courtesy

Greentown Labs, which is co-located in the Boston and Houston areas, has announced its current CEO is stepping down after less than a year in the position.

The nonprofit's CEO and President Kevin Knobloch announced that he will be stepping down at the end of July 2024. Knobloch assumed his role last September, previously serving as chief of staff of the United States Department of Energy in President Barack Obama’s second term.

“It has been an honor to lead this incredible team and organization, and a true privilege to get to know many of our brilliant startup founders," Knobloch says in the news release. “Greentown is a proven leader in supporting early-stage climatetech companies and I can’t wait to see all that it will accomplish in the coming years.”

The news of Knobloch's departure comes just over a month after the organization announced that it was eliminating 30 percent of its staff, which affected 12 roles in Boston and six in Houston.

According the Greentown, its board of directors is expected to launch a national search for its next CEO.

“On behalf of the entire Board of Directors, I want to thank Kevin for his efforts to strengthen the foundation of Greentown Labs and for charting the next chapter for the organization through a strategic refresh process,” says Dawn James, Greentown Labs Board Chair, in the release. “His thoughtful leadership will leave a lasting impact on the team and community for years to come.”

Knobloch reportedly shifted Greentown's sponsorship relationships with oil companies, sparking "friction within the organization," according to the Houston Chronicle, which also reported that Knobloch said he intends to return to his clean energy consulting firm.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News