at the helm

Greentown Labs names interim leader as hunt for CEO continues

The newly named interim Greentown Labs CEO is based in Boston. Photo via Greentown

Greentown Labs, after announcing its CEO is stepping down at the end of the month, has named the climatetech incubator's interim leader.

Kevin Dutt, a recently named member of Greentown's board of directors based in the Boston area, has been appointed interim CEO. The decision, made by the board, is effective July 8. Dutt is a management consultant at Sustainable Edge Consulting, as well as an environmental entrepreneur, executive, and adviser with 25 years of experience.

"We continue to believe deeply in Greentown and are proud to have one of our board members step into this role before our next long-term CEO is identified," the nonprofit writes in the announcement. "We are confident Kevin is best suited to lead Greentown through this time of transition—his experience in climate and sustainability, philanthropy, and venture will play a key role in helping seamlessly guide Greentown in the coming months."

Dutt will lead the organization, which has dual locations in Houston and Somerville, Massachusetts, following outgoing CEO and President Kevin Knobloch. Knobloch announced in May that he will be stepping down after less than a year in the position. He was named CEO last September, previously serving as chief of staff of the United States Department of Energy in President Barack Obama’s second term.

The news of Knobloch's departure came just over a month after the organization announced that it was eliminating 30 percent of its staff, which affected 12 roles in Boston and six in Houston.

Dutt is the fourth person to take the help of Greentown since Emily Reichert, who held the position from 2013 to 2022, stepped down. Prior to Knobloch's appointment, Greentown's Co-Founder Jason Hanna and former CFO Kevin T. Taylor, who each served in an interim capacity.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News