onboarding

Greentown Labs names 3 new board members

Three climatetech experts have joined Greentown's board. Photo via Greentown Labs

With dual locations in the Houston and Boston areas, Greentown Labs has added three new members of its board of directors.

The climatetech incubator has added the following individuals to its board:

All three of the new board members are based in the Boston area, joining 10 existing members, which includes Houstonians Barbara Burger, Dawn James, and Nisha Desai.

“On behalf of the entire Board of Directors, we enthusiastically welcome Kevin, Elizabeth, and John to Greentown Labs’ Board,” James, who serves as the board chair, says in a news release. “They each bring impressive experience and deep expertise across the climate and energy transition ecosystem that will play an important role as we chart Greentown’s next chapter of impact.”

The nonprofit has seen some big changes this year, announcing that its CEO and President Kevin Knobloch will be stepping down at the end of July. Knobloch assumed his role last September, previously serving as chief of staff of the United States Department of Energy in President Barack Obama’s second term.

The news of Knobloch's departure came several weeks after the organization announced that it was eliminating 30 percent of its staff, which affected 12 roles in Boston and six in Houston.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News