donations incoming

Climatetech funding: New York investment firm to donate part of proceeds to Greentown Labs

Greentown Labs announced it's receiving a percentage of Prithvi Ventures' proceeds. Photo courtesy of Greentown Labs

Effective immediately, Greentown Labs, which has locations in Houston and Somerville, Massachusetts, is benefitting from funds raised by an investment group.

Greentown Labs, a nonprofit climatetech incubator, announced its partnership with New York-based Prithvi Ventures, a firm that specializes in early-stage climatetech. The unique partnership includes Prithvi Ventures donating "a percentage of proceeds received from its Fund 1 and Fund 2 to Greentown on a quarterly basis, in perpetuity," per Greentown's news release. The exact percentage was not disclosed.

“There’s an understanding in sports that the best teams always take responsibility and accountability for their own and look out for each other—that the members of the team are a reflection of the franchise,” says Kunal Sethi, founder and general partner at Prithvi Ventures. “I have always believed the same to be true in venture, too.

"Founders should know their supporters, team, and cap tables inside and out. It matters who you surround yourself with and Greentown Labs is always the first name that comes up for me," he continues. "Every founder in climatetech should work with them or they’re missing out on so much.”

Prithvi Ventures already has a handful Greentown member companies in its investment portfolio, including Carbon Upcycling, Mars Materials, Nth Cycle, and Rheom Materials. The firm has invested in 30 companies total, and aims to lead rounds, preferring to be the first large check for the startups it invests in.

“We are delighted to deepen our relationship with Prithvi Ventures and are grateful for their ongoing support,” Aisling Carlson, senior vice president of partnerships at Greentown Labs, says in the statement. “Through this new partnership, Prithvi Ventures and its limited partners are setting an example for how the venture community can more directly support the incubators and accelerators working to catalyze climatetech innovation and entrepreneurship.”

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News