ready to go make

Greentown Labs names 6 energy tech startups to Shell-backed accelerator

Meet the six startups that will be working with Shell and Greentown Labs for the next six months. Photo via Greentown

Greentown Labs has named the six participating climatetech startups for an accelerator for a global energy leader.

Shell and Greentown Labs announced the cohort for Greentown Go Make 2023 — a program designed to accelerate partnerships between startups and corporates to advance carbon utilization, storage, and traceability solutions. Shell, which invests in net-zero and carbon-removal technologies, is hoping to strategically align with startups within carbon utilization, storage, and traceability across the energy transition spectrum.

“At Greentown Labs we recognize and appreciate the role energy incumbents must play in the energy transition, and we’re eager to facilitate meaningful partnerships between these impressive startups and Shell—not only to advance these technologies but also to help Shell achieve its sustainability goals,” Kevin Knobloch, CEO and President of Greentown Labs, says in a news release. “We know carbon utilization, storage, and traceability will play a critical role in our collective efforts to reach net-zero, and we’re enthusiastic about the potential impact these companies can have in that work.”

The cohort, selected from 110 applications, is co-located at Greentown's Houston and Somerville, Massachusetts, locations and includes:

  • Portland-based Caravel Bio is developing a novel synthetic biology platform that uses microbial spores and enzymes to create catalysts that are long-lasting and can withstand extreme conditions and environments.
  • Circularise, which is based in the Netherlands, is developing a blockchain platform that provides digital product passports for end-to-end traceability and secure data exchange for industrial supply chains.
  • Corumat, based in Washington, converts organic waste into high-performance, insulating, greaseproof, and biodegradable packaging materials.
  • Cambridge, Massachusetts-headquartered Lydian develops a fully electrified reactor that can convert a variety of gaseous, non-fossil feedstocks into pure syngas with high efficiency.
  • Maple Materials from Richmond, California is developing a low-cost electrolysis process to split carbon dioxide into graphite and oxygen.
  • Ontario, Canada-founded Universal Matter develops a proprietary Flash Joule Heating process that converts carbon waste into high-value and high-performance graphene materials to efficiently create sustainable circular economies.

The program, which includes $15,000 in non-dilutive stipend funding for each company, will work closely with Shell and Greentown over six months via mentorship, networking opportunities, educational workshops, and partnership-focused programming to support collaboration. Go Make 2023 concludes with a showcase event on March 27 at Greentown Labs’ Houston location.

This week, Shell announced another accelerator cohort it's participating in. The Shell GameChanger Accelerator, a partnership with the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), named four West Coast climatetech companies: DTE Materials, Hexas Biomass, Invizyne Technologies, and ZILA BioWorks. The program provides early-stage cleantech startups with access to experts and facilities to reduce technology development risk and accelerate commercialization of new cleaner technologies.

“Tackling the climate challenge requires multifaceted solutions. At Shell, we believe technology that removes carbon dioxide from the atmosphere will be essential for lowering emissions from energy and chemical products,” Yesim Jonsson, Shell’s GCxN program manager, says in a statement. “The companies in GCxN's sixth cohort embody these objectives and have the potential to usher in a more sustainable future.”

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News