Cemvita aims to capitalize on Brazil’s regulatory framework around biodiesel blending and Sustainable Aviation Fuel. Photo via cemvita.com

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

The investment plans to add 350 million pounds per year of advanced recycling capacity at Baytown and Beaumont, which will bring ExxonMobil’s total capacity to 500 million pounds annually. Photo via ExxonMobil.com

ExxonMobil invests over $200M in Texas advanced recycling sites

doubling down

ExxonMobil announced that it plans to invest more than $200 million to expand its advanced recycling operations at its Baytown and Beaumont sites that are expected to start in 2026. The new operations can help increase advanced recycling rates and divert plastic from landfills, according to ExxonMobil.

“We are solutions providers, and this multi-million-dollar investment will enhance our ability to convert hard-to-recycle plastics into raw materials that produce valuable new products,” says Karen McKee, president of ExxonMobil Product Solutions, in a news release.

The investment plans to add 350 million pounds per year of advanced recycling capacity at Baytown and Beaumont, which will bring ExxonMobil’s total capacity to 500 million pounds annually. The first Baytown facility started in 2022 and represents one of the largest advanced recycling facilities in North America by having processed more than 70 million pounds of plastic waste.

“At our Baytown site, we’ve proven advanced recycling works at scale, which gives us confidence in our ambition to provide the capacity to process more than 1 billion pounds of plastic per year around the world,” McKee said in a news release. “We’re proud of this proprietary technology and the role it can play in helping establish a circular economy for plastics and reducing plastic waste.”

Advanced recycling works by transforming plastic waste into raw materials that can be used to make products from fuels to lubricants to high-performance chemicals and plastics. Advanced recycling allows for a broader range of plastic waste that won't be mechanically recycled and may otherwise be buried or burned.

ExxonMobil will continue development of additional advanced recycling projects at manufacturing sites in North America, Europe and Asia with the goal of reaching 1 billion pounds per year of recycling capacity by 2027.

Greentown Labs and Evonik have launched the Greentown Go Make 2025 accelerator to support startups developing sustainable technologies for the personal care industry. Photo via Evonik.us

Greentown Labs, Evonik launch accelerator to boost sustainability in personal care products

apply now

Greentown Labs and its corporate partner, Germany-based chemicals company Evonik, are calling for submissions to a new program geared at accelerating more sustainable personal care products.

The Greentown Go Make 2025 accelerator, which is based in both Greentown's Houston and Boston-area locations and open to companies from around the world, as launched applications now through January 23.

"Designed to accelerate startup-corporate partnerships to advance climatetech, this Greentown Go program is focused on increasing sustainability within the personal-care industry through the development, introduction, and commercialization of technologies that reduce products’ manufacturing-related emissions and end-of-life environmental impact," reads a news release from Greentown.

"More specifically, Go Make 2025 is interested in biodegradable polymers and sustainable specialty chemicals for personal care. Further details on the technology areas of interest can be found in the request for applications."

The selected companies will have access to Greentown's facilities and receive mentorship, networking opportunities, educational workshops, and structured programming. The startups will also have partnership opportunities with the program's corporate partner Evonik.

“The Greentown Go program represents an exciting opportunity for startups to showcase their groundbreaking solutions in sustainable chemistry,” Anil Saxena, vice president of RD&I at Evonik, says in the release. “At Evonik, innovation and sustainability are not just buzzwords; they are fundamental to our strategic growth. We are eager to identify and collaborate with companies that share our commitment to creating a more sustainable future.”

The global personal care market — which includes products across hygiene, cosmetics and beautification, cleaning, and grooming — represents 0.5 to 1.5 percent of global greenhouse-gas emissions, per Greentown's release. Evonik announced its sustainability-focused game plan in September, focusing on bio-based solutions, the energy transition, and the circular economy.

“The building blocks of the personal-care industry are ripe for climatetech innovation, and there’s no better partner for harnessing this opportunity than Evonik, a global leader in specialty chemicals,” adds Aisling Carlson, senior vice president of partnerships at Greentown. “Greentown Go has a strong track record of fostering meaningful startup-corporate partnerships, and we look forward to working with Evonik and a set of groundbreaking entrepreneurs in this program.”

"Driving the Energy Transition” will air on Houston Public Media’s KUHF News 88.7 every other Monday. Photo courtesy of UH

University of Houston launches web, radio series to address key energy transition topics

tune in

The University of Houston Energy Transition Institute — in its mission to address challenges in the energy field and the ongoing energy transition — is launching two educational series via radio program and web seminars.

“Both these programs are ways for us to reach and share information with our stakeholders in the Houston ecosystem, region, nation and world about the latest trends in research and policy related to the energy transition,” Debalina Sengupta, chief operating officer at ETI, says in a news release.

"Driving the Energy Transition” will air on Houston Public Media’s KUHF News 88.7, and new episodes will be available every other Monday. The Energy Transition Webinar series will run biweekly on Tuesdays and offer online discussions that will feature UH experts and other experts in the field.

The radio series plans to explore innovations, policies and technologies around shifting the world to lower-carbon resources. The webinar series promises a “deep dive” into topics like the hydrogen economy, carbon capture, the circular economy, and sustainable energy practices, according to a news release. The webinars will include strategies for the energy landscape from Texas to globally, from UH faculty, students, industry leaders, and energy pioneers.

“UH is The Energy University, and 'Energy Transition' is the topic that should be on everyone’s mind right now,” ETI founding executive director Joe Powell adds. “How do we meet the dual challenge of expanding supply for equitable global access to energy, while also reducing fossil carbon dioxide emissions to address climate change? How do we continue to produce but also recycle the high-performance hydrocarbon products, which underpin our quality of life?”

The ETI focuses on hydrogen, carbon management, and circular plastics, and was founded in 2022 with a $10 million commitment from Shell. The institute also received a $100,000 grant from Baker Hughes in 2023.The institute also works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the University, and with other colleges, universities and industry partners. The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants.

“Our aim is to provide reliable scientific evidence-based knowledge for all, to enable them to make informed decisions for the future of energy,” Sengupta says.

Re:3D has moved onto the next phase of a NSF program focused on circular economy innovation. Photo via re3d.org

Houston-founded co. moves on in NSF circular economy accelerator

next phase

An innovative project led by Houston-founded re:3D Inc. is one of six to move forward to the next phase of the National Science Foundation's Convergence Accelerator that aims to drive solutions with societal and economic impact.

The sustainable 3D printer company will receive up to $5 million over three years as it advances on to Phase 2 of the program for its ReCreateIt project, according to a statement from the NSF. Co-funded by Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation, or CSIRO, ReCreateIt enables low-income homeowners to design sustainable home goods using recycled plastic waste through 3D-printing at its net-zero manufacturing lab.

The project is in partnership with Austin Habitat for Humanity ReStores and researchers from the University of Wollongong and Western Sydney University. CSIRO is funding the Australian researchers.

In Phase II the teams will receive training on product development, intellectual property, financial resources, sustainability planning and communications and outreach. The goal of the accelerator is to promote a "circular economy," in which resources are reused, repaired, recycled or refurbished for as long as possible.

"Progress toward a circular economy is vital for our planet's health, but it is a complex challenge to tackle," Douglas Maughan, head of the NSF Convergence Accelerator program, said in the statement. "The NSF Convergence Accelerator program is bringing together a wide range of expertise to develop critical, game-changing solutions to transition toward a regenerative growth model that reduces pressure on natural resources, creates sustainable growth and jobs, drastically reduces waste and ultimately has a positive impact on our environment and society. Phase 2 teams are expected to have strong partnerships to ensure their solutions are sustained beyond NSF support."

Other teams that are moving forward in the accelerator include:

  • FUTUR-IC: A global microchip sustainability alliance led by MIT
  • PFACTS: Led by IBM's Almaden Research Center and aiming to replace, redesign and remediate fluorine-containing per- and polyfluoroalkyl substances (PFAS)
  • SOLAR: A team led by Battelle Memorial Institute using photovoltaic circularity to develop the technology needed to achieve sustainable solar recycling
  • SpheriCity: A cross-sector tool that examines how plastics, organics and construction and demolition materials flow through local communities developed by the University of Georgia Research Foundation Inc.
  • Topological Electric: Another MIT-led team, this group aims to develop electronic and energy-harvesting device prototypes based on topological materials.

Re:3d and 15 other teams were first named to the Convergence Accelerator in 2022 with a total investment of $11.5 million. At the end of Phase 1, the teams participated in a formal Phase 2 proposal and pitch, according to the NSF. The Convergence Accelerator was launched in 2019 as part of the NSF's Directorate for Technology, Innovation and Partnerships.

This is the latest project from re:3D to land national attention and funding. Last year the company was one of 12 to receive up to $850,000 from NASA's SBIR Ignite pilot for its project that aimed to develop a recycling system that uses a 3D printer to turn thermoplastic waste generated in orbit into functional and useful objects, according to the project's proposal.

In 2022, it was also among the winners of an inaugural seed fund expo from the U.S. Small Business Administration. It also earned the prestigious Tibbetts Award from the SBA in 2021. The award honors small businesses that are at the forefront of technology.

Re:3D Inc. was founded in 2013 by NASA contractors Samantha Snabes and Matthew Fiedler and is based in Clear Lake. It's known for its GigaBot 3D printer, which uses recycled materials to create larger devices. The company announced its new Austin headquarters earlier this year.

———

This article originally ran on InnovationMap.

The hub will combine advanced sorting and recycling operations to address the plastic waste challenge. Photo courtesy of LYB

LYB makes deal to bring new plastics recycling hub to German town

guten tag

Houston-based chemical company LyondellBasell has signed a land lease agreement for a new integrated plastic waste recycling hub by an existing industrial park in Knapsack, Germany.

The agreement is with YNCORIS, a German industrial service provider. The hub will combine advanced sorting and recycling operations to address the plastic waste challenge and the company hopes it will grow the circular economy.

The first phase of the project will see the construction of an advanced sorting facility, which will process mixed plastic waste that can produce feedstock for mechanical and advanced recycling, since this mixed plastic waste is not recycled and usually sent to incineration for energy recovery. The hub's initial advanced sorting facility expects to start operations in the first quarter of 2026. The large facility will cover an area equivalent to 20 soccer fields.

"The industrial park in Knapsack is the ideal location for our integrated hub as is it close to our world-scale facilities in Wesseling and will allow us to develop additional technologies for the recycling of plastic waste," Yvonne van der Laan, LyondellBasell's executive vice president of circular and low carbon solutions, says in a news release. "The integration of various technologies will allow us to build scale and offer our customers a wide range of products from recycled and renewable resources."

In April, LyondellBasell also secured 208 megawatts of renewable energy capacity from a solar park in Germany. Under the 12-year deal, LyondellBasell aim s to purchase about 210 gigawatt-hours of solar power each year from Germany-based Encavis Asset Management.

By 2030, LyondellBasell hopes to produce and market at least 2 million metric tons of recycled and renewable‑based polymers annually.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Engie signs deal to supply wind power for Texas data center

wind deal

Houston-based Engie North America, which specializes in generating low-carbon power, has sealed a preliminary deal to supply wind power to a Cipher Mining data center in Texas.

Under the tentative agreement, Cipher could buy as much as 300 megawatts of clean energy from one of Engie’s wind projects. The financial terms of the deal weren’t disclosed.

Cipher Mining develops and operates large data centers for cryptocurrency mining and high-performance computing.

In November, New York City-based Cipher said it bought a 250-acre site in West Texas for a data center with up to 100 megawatts of capacity. Cipher paid $4.1 million for the property.

“By pairing the data center with renewable energy, this strategic collaboration supports the use of surplus energy during periods of excess generation, while enhancing grid stability and reliability,” Engie said in a news release about the Cipher agreement.

The Engie-Cipher deal comes amid the need for more power in Texas due to several factors. The U.S. Energy Information Administration reported in October that data centers and cryptocurrency mining are driving up demand for power in the Lone Star State. Population growth is also putting pressure on the state’s energy supply.

Last year, Engie added 4.2 gigawatts of renewable energy capacity worldwide, bringing the total capacity to 46 gigawatts as of December 31. Also last year, Engie signed a new contract with Meta (Facebook's owner) and expanded its partnership with Google in the U.S. and Belgium.

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”